Publications
For an up-to-date list of publications, please see this Google scholar page.
Selected Journal Articles
- Deng, S., Mora, C., Apelian, D., & Bostanabad, R. (2022). Data-Driven Calibration of Multi-Fidelity Multiscale Fracture Models via Latent Map Gaussian Process. Journal of Mechanical Design, 1-15.
- Deng, S., Soderhjelm, C., Apelian, D., & Bostanabad, R. (2022). Reduced-order multiscale modeling of plastic deformations in 3D alloys with spatially varying porosity by deflated clustering analysis. Computational Mechanics, 1-32.
- Eweis-Labolle, J., Oune, N., & Bostanabad, R. (2022). Data Fusion with Latent Map Gaussian Processes. Journal of Mechanical Design, 1-41.
- Wang, H., Planas, R., Chandramowlishwaran, A., & Bostanabad, R. (2022). Mosaic flows: A transferable deep learning framework for solving PDEs on unseen domains. Computer Methods in Applied Mechanics and Engineering, 389, 114424.
- Chen, W., Iyer, A., & Bostanabad, R. (2022). Data Centric Design: A New Approach to Design of Microstructural Material Systems. Engineering, 10, 89-98.
- Oune, N., & Bostanabad, R. (2021). Latent map Gaussian processes for mixed variable metamodeling. Computer Methods in Applied Mechanics and Engineering, 387, 114128.
- Planas Casadevall, R., Oune, N., & Bostanabad, R. (2021). Evolutionary gaussian processes. Journal of Mechanical Design, 143(11), 111703.
- Suh, Y., Bostanabad, R., & Won, Y. (2021). Deep learning predicts boiling heat transfer. Scientific Reports, 11(1), 5622. doi:10.1038/s41598-021-85150-4.
- Bostanabad, R. (2020). Reconstruction of 3D Microstructures from 2D Images via Transfer Learning. Computer-Aided Design, 128, 102906. doi:10.1016/j.cad.2020.102906.
- Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., & Bessa, M. A. (2019). Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52), 26414-26420.
- Bostanabad, R., Y.-C. Chan, L. Wang, P. Zhu and W. Chen (2019). Globally Approximate Gaussian Processes for Big Data with Application to Data-Driven Metamaterials Design. Journal of Mechanical Design, 141, 1-11.
- Zhang, W.*, Bostanabad, R.*, Liang, B., Su, X., Zeng, D., Bessa, M. A., Wang, Y., Chen, W. & Cao, J. (2019). A numerical Bayesian-calibrated characterization method for multiscale prepreg preforming simulations with tension-shear coupling. Composites Science and Technology, 170, 15-24.
- Bostanabad, R., Liang, B., Gao, J., Liu, W. K., Cao, J., Zeng, D., Su, X., Xu, H., Li, Y. & Chen, W. (2018). Uncertainty quantification in multiscale simulation of woven fiber composites. Computer Methods in Applied Mechanics and Engineering, 338, 506-532.
- Bostanabad, R., Zhang, Y., Li, X., Kearney, T., Brinson, L. C., Apley, D. W., Liu, W. K. & Chen, W. (2018). Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques. Progress in Materials Science, 95, 1-41.
- Bostanabad, R., Kearney, T., Tao, S., Apley, D. W. & Chen, W. (2018). Leveraging the nugget parameter for efficient Gaussian process modeling. International Journal for Numerical Methods in Engineering, 114, 501-516.
- Hassaninia, I.*, Bostanabad, R.*, Chen, W. & Mohseni, H. (2017). Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns. Scientific Reports, 7, 15259.
- Bessa, M. A., Bostanabad, R., Liu, Z., Hu, A., Apley, D. W., Brinson, C., Chen, W. & Liu, Wing K. (2017). A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 320, 633-667.
- Bostanabad, R., Chen, W. & Apley, D. W. (2016). Characterization and reconstruction of 3D stochastic microstructures via supervised learning. Journal of Microscopy, 264, 282-297.
- Bostanabad, R., Bui, A. T., Xie, W., Apley, D. W. & Chen, W. (2016). Stochastic microstructure characterization and reconstruction via supervised learning. Acta Materialia, 103, 89-102.
Selected Refereed Conference Papers
- Planas, R., Oune, N., & Bostanabad, R. (2020, August). Extrapolation With Gaussian Random Processes and Evolutionary Programming. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 84003, p. V11AT11A004). American Society of Mechanical Engineers.
- Bostanabad, R., Y.-C. Chan, L. Wang, P. Zhu and W. Chen (2019). Gaussian process emulation for big data in data-driven metamaterials design. Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences.
- Tao, S., Shintani, K., Bostanabad, R., Chan, Y.-C., Yang, G., Meingast, H. & Chen, W. (2017). Enhanced Gaussian Process Metamodeling and Collaborative Optimization for Vehicle Suspension Design Optimization. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers.