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Summary

Gaussian process (GP) metamodels have been widely used as surrogates for com-
puter simulations or physical experiments. The heart of GP modeling lies in
optimizing the log-likelihood function with respect to the hyperparameters to
fit the model to a set of observations. The complexity of the log-likelihood func-
tion, computational expense, and numerical instabilities challenge this process.
These issues limit the applicability of GP models more when the size of the train-
ing data set and/or problem dimensionality increase. To address these issues,
we develop a novel approach for fitting GP models that significantly improves
computational expense and prediction accuracy. Our approach leverages the
smoothing effect of the nugget parameter on the log-likelihood profile to track
the evolution of the optimal hyperparameter estimates as the nugget parame-
ter is adaptively varied. The new approach is implemented in the R package
GPM and compared to a popular GP modeling R package (GPfit) for a set of
benchmark problems. The effectiveness of the approach is also demonstrated
using an engineering problem to learn the constitutive law of a hyperelastic com-
posite where the required level of accuracy in estimating the response gradient
necessitates a large training data set.
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1 INTRODUCTION

Since the rise of simulation-based science and engineering, the field of surrogate modeling has become invaluable to
replace expensive computer simulations or real experiments with fast and accurate surrogate models. The use of Gaus-
sian processes (GPs), proposed by Sacks et al,1 as surrogates has been of particular interest. GP models can interpolate
the data by viewing the response surface as a realization of a Gaussian random process. They also have a natural mech-
anism to model noisy data (ie, to avoid interpolation) and have been widely used in a variety of applications such as
providing insights into the problem of interest1-3 (eg, determining the response sensitivities to inputs), quantifying the
prediction uncertainty,4 optimizing expensive functions,5-9 and enabling tractable and efficient Bayesian calibration and
bias correction.10,11

A common rule of thumb for fitting a GP model to a well-behaved response surface is to have at least 10D observation
points,12 where D is the dimensionality of the inputs denoted by x = [x1, … , xD]. However, as computational resources
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have become more available, it is now far less expensive to collect data and far more desirable to create large training
data sets and fit more accurate metamodels.13 It is well known in the literature that, as the size of the training data set
increases, the process of fitting a GP model becomes hampered by numerical issues14 and the fitting costs increase pro-
hibitively (we elaborate on these issues in Section 2). Methods such as fixed rank kriging,15 local kriging,16 and domain
partitioning16-18 exist for addressing these numerical issues when fitting GP models to large data sets. However, the pre-
dictions may not depend on all available observations. In contrast, this paper focuses on the problem of fitting a global GP
model such that the future predictions depend on the entire training data set to ensure that both long- and short-range cor-
relations are considered. The proposed approach improves the predictive power and decreases the numerical instabilities
and computational expense that arise when the data set is large and/or the dimensionality is high.

We note that, for the purposes of this work, large data set refers to the order of up to thousands of observations and
high dimensionality refers to more than 20 dimensions. A classic problem that can be very high dimensional and require
large training data sets is building structure–property relations in materials19-22 where the inputs (or, in machine learning
parlance, the predictors) correspond to statistical descriptors that characterize the material microstructure.23 Because the
properties of such materials are generally highly nonlinear (when viewed as a function of microstructural descriptors), a
large training data set is required to understand how the properties can be linked to the microstructural descriptors.

To fit a GP model, the most common approach is to use maximum likelihood estimation (MLE)24-26 for estimating the
model parameters. Although many optimization methods such as genetic algorithms (GAs),27 pattern searches,28,29 and
particle swarm optimization (PSO)30 have been used in the MLE process, gradient-based optimization techniques are
commonly preferred due to their ease of implementation and computational efficiency. These methods, however, do not
guarantee global optimality, and so it is essential to perform the optimization procedure numerous times with different
initial guesses. Additionally, the profile of the objective function in the MLE process is known to have flat regions (ie, the
gradient is small), which can render the convergence slow. These 2 issues greatly increase the cost of fitting an accurate
GP model with gradient-based optimization methods (although the overall cost is still less than that achieved with, for
example, GA or PSO31).

Inversion of the correlation matrix is an integral part of the GP modeling, and the computational bottleneck in fitting a
GP model to large data sets lies in repeatedly constructing and inverting the correlation matrix (see Section 2). When 2 or
more observations are nearby (which is often inevitable in large data sets), the correlation matrix becomes nearly singular,
and numerical issues arise while calculating its inverse. The most common approach to address this is to add a nugget or
jitter 𝛿 to the diagonal elements of the correlation matrix.1,32-34 While this improves the conditioning of the correlation
matrix,35 the resulting metamodel no longer perfectly interpolates the observations (perfect interpolation is desirable for
noiseless data). In other words, inclusion of a nugget, if it is chosen too large, may misrepresent the system that the
GP model is emulating because the nugget is generally employed to deal with noisy data. While some work has been
done to determine how the nugget alleviates ill-conditioning,35,36 little attention has been given to fully understanding its
impact on the log-likelihood function and capitalizing on it to, simultaneously, improve the model fitting and prediction
performance.

To address the aforementioned issues, we propose 2 mechanisms to improve the accuracy and efficiency in fitting the
hyperparameters of a GP model. Specifically, we propose (i) a novel method to leverage the smoothing effect of the nugget
parameter on the profile of the log-likelihood function to efficiently estimate the optimal hyperparameters by tracking
their evolution as the nugget parameter is varied and (ii) a new criterion for determining the optimal nugget parameter
for a given data set.

We emphasize that our contribution is not developing an optimization algorithm. Rather, in our method, the profile of
the objective function (ie, the log-likelihood function) is adaptively changed to help the utilized optimization algorithm
(eg, steepest descent or Levenberg-Marquardt37,38) find the global optimum. We also address the issues related to singu-
larity of the correlation matrix, fitting costs, and inclusion of a nugget. As for the nugget parameter, in particular, its
inclusion in the model and the choice of its final value are thoroughly examined. In the literature, there are major dis-
agreements on when to include the nugget and what its value should be, especially in the case of noiseless data sets. This
is partly because the inclusion of a nugget represents noise in observing the response values and avoids perfect interpo-
lation. In spite of this, Gramacy and Lee34 argue that a nugget should always be included to combat numerical problems
and help eliminate potential model biases that are inherently introduced in simulation works, even for noiseless data.
Multiple works practice the inclusion of nugget solely based on the condition number 𝜅 of the correlation matrix.33,39,40

From a new perspective, our studies indicate that controlling the minimum eigenvalue of the correlation matrix while
minimizing the cross-validation error provides a robust and computationally sound method to decide when the nugget
should be used and what value should be assigned to it.
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The approach outlined in this paper is implemented in the R package GPM, which is publicly available through CRAN.
Our approach can fit accurate and global predictive metamodels to large data sets for problems with high dimensionality.
To validate this claim, we test the performance of the package against a set of benchmark problems spanning a wide range
of data set size and problem dimensionality. As previously mentioned, one such application is learning (ie, predicting)
the properties of new materials. While neural networks have been previously used to computationally predict material
properties,23 our approach requires far less data than typical neural network applications because neural networks inher-
ently require more data to ensure accuracy. Creating metamodels to predict the material properties of a microstructure
would greatly improve the computational expense of multiscale modeling, which is currently one of the major obstacles
in computational materials science.19

The remainder of this paper is organized as follows. Section 2 presents a general overview of GP modeling. Section 3.1
presents our method for leveraging the nugget to more effectively estimate GP model hyperparameters. Details on the
choice of the final value of the nugget and the implementation of the proposed approach in GPM are included in
Sections 3.2 and 3.3, respectively. A performance comparison between GPM and the popular R package GPfit31 for
7 noiseless problems of various dimensionality and data set sizes is provided in Section 4. Section 5 illustrates the use of
GPM on a data set used to model the constitutive law of a hyperelastic composite, and Section 6 concludes this paper.

2 GP METHODOLOGY

A GP model is a special case of a kriging model originally developed by mining engineer D. G. Krige. The GP predictor is
the best linear unbiased predictor41 in that it minimizes the mean squared error (MSE) of prediction among all unbiased
linear predictors.

The standard formulation of a GP model is

Y (x) = 𝑓 (x) + Z (x) , (1)

where x = [x1, … , xD] denotes the D-dimensional input vector, f (x) is a linear combination of some known set of basis
functions (such as polynomial or exponential), and Z(x) is a zero-mean stationary stochastic process. Taking f (x) = 𝛽, the
global prior mean of the process, we arrive at the ordinary GP formulation

Y (x) = 𝛽 + Z (x) , (2)

which is commonly regarded as producing accurate predictions as long as one avoids extrapolation.42 As previously
mentioned, Z(x) is assumed to be stationary with a covariance function of the form

𝑐𝑜𝑣
(

x, x′) = 𝜎2R
(

x, x′) , (3)

where R(·) is the spatial correlation function (SCF) and 𝜎2 is the prior variance. While the GPM package can handle
multiple-response data sets, in the following discussion we focus on a single-response model and refer the readers to the
work of Kennedy and O'Hagan.43 Many different SCFs have been widely used in the literature, such as the Gaussian,
Matern,44 lifted Brownian,45 and power exponential,46 to name a few. We direct the readers to the end of the section
for further details on these SCFs. Hereafter, we focus on the Gaussian correlation function, a special case of the power
exponential correlation. The discussions can readily be extended to any other correlation function.

The Gaussian correlation function for D-dimensional data is given by

R
(

x, x′) = exp
{
−
(

x − x′)T𝚯
(

x − x′)} , (4)

where 𝚯 = diag (𝜽) and 𝜽 = [𝜃1, 𝜃2, … , 𝜃D] are the scale (or roughness) parameters. Given a set of n observations, the
elements of the correlation matrix R are Rij = R(xi, xj) for i, j ∈ [1, 2, … , n]. The most common method to estimate the
optimal hyperparameters (ie, �̂�, 𝛽, and �̂�2) is through minimization of the negative logarithm of the likelihood function
(for derivations, see the works of Mardia and Marshall24 and Currin et al25)

�̂� =
[
�̂�, 𝛽, �̂�2

]
= argmin

𝜽,𝛽,𝝈2

1
2

ln ∣ R ∣ +n
2

ln
(
𝜎2) + ( y − 𝟏𝛽)TR−1 ( y − 𝟏𝛽)

2𝜎2 = argmin
𝜽,𝛽,𝝈2

, (5)

where y = [ y1, … , yn]T is the vector of observed responses and 1 is an n × 1 vector. With the log-likelihood formulation,
the closed-form solutions for 𝛽 and 𝜎2 can be found as a function of 𝜽 (this procedure is called profiling). Thereafter, the
entire optimization procedure is expressed solely in terms of the scale parameters 𝜽.
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FIGURE 1 The evolution of the profile of the log-likelihood function  as the nugget is varied. A, The profile of  for 𝛿 = 2 × 10−16 showing
roughness and many local minima; B, The profile of  for 4 different values of 𝛿; C and D, Magnified views from panel B where the evolution
of the 2 local optima is tracked as the nugget is decreased from 10−2 to 10−16 [Colour figure can be viewed at wileyonlinelibrary.com]

The core challenge of fitting a GP model lies in the complex nature of  for large data sets. The function typi-
cally has many local optima and large relatively flat regions.41,47 As aforementioned, gradient-based searches have been
shown to generally outperform other optimization techniques, but to ensure global optimality, it is necessary to perform
optimization many times, each with a different initial guess for 𝜽.

These issues result in an expensive computational search to estimate the 𝜽's. MacDonald et al31 improved the
performance of gradient-based optimization by reparameterizing the scale parameter in the correlation function as

𝜃i = 10𝝎i (6)

and then optimizing  in Equation 5 with respect to 𝝎. Reparameterization facilitates optimization of the objective func-
tion, but the resulting profile can still have many local optima and large flat regions (see Figure 1A). As the dimension
of the problem grows, the search space for the optimal hyperparameters grows accordingly, further increasing the com-
putational expense of the optimization procedure. This leads us to the primary research question of this work: Is there a
way to further improve the optimization of , ie, to reduce the number of optimization iterations while improving the ability
to find the global optimum?

Another challenge in the optimization problem involves the inversion of R in Equation 5. As the size of the training
data set grows, this inversion becomes susceptible to numerical issues (arising from near singularity) and prohibitively
expensive. Such issues not only hinder the optimization process but also adversely affect the predictive power of the fitted
model. As noted before, currently, the most common approach to address the singularity issue is to add a nugget or jitter,
𝛿,1,32-34 to the correlation matrix R. Mathematically, one would replace the ill-conditioned R with R𝜹 where

R𝜹 = R + I𝛿, (7)

with I being the identity matrix of size n × n. The value of 𝛿 is chosen to be a very small number (eg, 10−6) based on
past experience, determined by constraining the condition number of R31,40 or even estimated via the MLE method.34

For noiseless data, if we decrease the value of the nugget added to the model, less smoothing will occur and the GP
predictor will more closely interpolate the data (barring numerical inaccuracies, which are exacerbated when the nugget
is reduced), resulting in a more accurate model. In the case of noisy data, 𝛿 should be chosen to be directly proportional
to the noise variance. In light of this, the second research question of this work revolves around whether a better criterion
exists to determine (i) the inclusion of the nugget and (ii) the best nugget value.

As previously mentioned, the choice of SCF varies greatly in the literature, and different SCFs have been used for
different types of problems. Four of the most commonly used SCFs are shown in Table 1 along with their mathematical
representations. The simplified versions of the power exponential and lifted Brownian SCFs (the Gaussian and lifted
Brownian with 𝛾 = 1, respectively) are particularly useful in that they model smooth or analytic functions. Regardless
of the choice of SCF used in a GP model, the MLE method can be used to estimate all the parameters of the correlation
function.

wileyonlinelibrary.com
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TABLE 1 The 4 spatial correlation functions (SCFs) implemented in the GPM package.
In the simplified version of lifted Brownian SCF, 𝛾 = 1, and hence, the resulting GP model
is infinitely differentiable like the Gaussian SCF. For the details on the features of these
SCFs and their parameters, see the work of Plumlee and Apley.45 Bold lowercase and
uppercase letters denote vectors and matrices, respectively

SCF Mathematical Representation R(x, x′) Hyperparameters

Power Exponential exp
{
−

D∑
i=1
𝜃i
(

xi − x′i
)𝑝}

𝜽, 𝜎2, 𝛽, p

Gaussian exp
{
−

D∑
i=1
𝜃i
(

xi − x′i
)2
}

𝜽, 𝜎2, 𝛽

Lifted Brownian 𝜓(x) − 𝜓(x′) − 𝜓(x − x′) − 1 𝛾 , 𝜁 , A
with 𝜓(x) = (1 + (xTA x)𝛾 )𝜁

Lifted Brownian 𝜓(x) − 𝜓(x′) − 𝜓(x − x′) − 1
with 𝜸 = 1 with 𝜓(x) = (1 + xTA x)𝜁 𝜁 , A

3 OUR APPROACH FOR IMPROVED GP FITTING

In this section, we first introduce our proposed nugget-leveraging method for improving the optimization process for the
reparameterized scale parameter 𝝎. Then, we elaborate on our approach for defining the ill-conditioning of the corre-
lation matrix during the optimization procedure and how to determine the best value of the nugget by examining the
cross-validation error. This section is concluded with a discussion on the implementation of the approach in our GPM
package.

3.1 Leveraging the effect of nugget on the log-likelihood function profile
When fitting a GP model using the MLE approach (see Equation 5), the goal is to find the value of𝜽 that minimizeswhile
searching over (0,∞)D, where D is the dimensionality of the input space. A common strategy (eg, MacDonald et al31) is to
reparameterize by working with the log of the scale parameters to reshape the profile of . With this reparameterization,
the hyperparameters are no longer bounded, ie, 𝝎 ∈ (−∞,∞)D. In practice, however, the models are typically fit on a
hypercube no larger than 𝝎 ∈ [−10, 10]D.

To illustrate how the nugget affects the objective function, we use a simple 1D example in which the response
function is

𝑓 (x) = log (x + 3) + sin
(
2x2) + x2, x ∈ [−2, 3] . (8)

The corresponding  as a function of 𝜔 is plotted in Figure 1A, where 20 equally spaced observations of x in [−2, 3] and
a very small nugget are used. As illustrated, the left tail of  has multiple local optima, and the right tail is very flat. These
issues, as aforementioned, make it difficult for a gradient-based optimization technique to ensure global optimality. Our
studies indicate that these issues can be addressed by investigating how the nugget affects the profile of . In Figure 1B,
the profile of  is plotted for various 𝛿's. It is evident that as 𝛿 increases,  is smoothed more and the noisy local optima
are eliminated. Hence, with larger nuggets, the optimal 𝝎 can be estimated much faster because fewer initial points are
needed in the gradient-based optimization. Although the optimal 𝝎 is not in the exact same location for each curve in
Figure 1B as 𝛿 is varied, the solutions are within the same neighborhood for small changes in 𝛿. In other words, it is
possible to determine the global optima for the no-nugget model (ie, when 𝛿 → 0) by first finding the local optima on
the curve with large 𝛿 and then tracking its evolution as 𝛿 is decreased in a controlled manner. (Here, it is assumed that
a model with a small or zero nugget would provide the highest predictive power. In Section 3.2, we elaborate on how to
choose the best nugget value.) This is demonstrated in Figures 1C and 1D, where the 2 local optima of  with 𝛿 = 10−2

are tracked as 𝛿 is decreased incrementally.
To further illustrate these findings, we examine a more complicated example in 2D. Given the 6-hump camelback

function42,48 defined in x1 ∈ [−2, 2], x2 ∈ [−1, 1]

𝑓 (x) =

(
4 − 2x2

1 +
x4

1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2
)

x2
2 , (9)
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FIGURE 2 The evolution of  as the nugget is varied for the 2D example in Equation 9: as the surfaces and the corresponding contour
plots indicate,  is smoothed as 𝛿 is increased [Colour figure can be viewed at wileyonlinelibrary.com]

we are again interested on how the profile of  changes as a function of 𝛿. Figure 2 demonstrates the evolution of  for
multiple choices of 𝛿 for 30 observations (generated with a space-filling algorithm). From the surface plots on the top row,
we can clearly see the smoothing effect on the log-likelihood function as the applied 𝛿 increases. The contour plots in the
bottom row illustrate that the location of the optimal solution does not change significantly across the profiles.

To investigate why the objective function is flattened and smoothed as 𝛿 increases, we re-examine how  is calculated.
From Equation 5, we can see that  is composed of the sum of 3 separate terms, with the third being a constant when
considering the closed-form solution for 𝛽 and �̂�2, resulting in only 2 terms. The first is a function of the determinant of
R, and the second is a function of the model variance. We can view the addition of a nugget to the correlation matrix as
the addition of noise to the observations. As this noise increases, the error in observations will increase, resulting in an
 whose value is less dependent on the scale parameters (ie, 𝝎's) but more dependent on the noise variance, which is, in
our case, the nugget. Mathematically, the determinant of a matrix is equivalent to the product of its eigenvalues; hence,
by replacing R with R𝛿 , the eigenvalues of R will have less impact on  as 𝛿 increases.

Prior to describing the method in detail, we first briefly introduce our approach to detect numerical issues and apply the
nugget accordingly. We will elaborate on how to choose the final value for the nugget in Section 3.2. We select the nugget
𝛿 to ensure that the minimum eigenvalue of R𝛿 = R + I𝛿 exceeds a specified value 𝜀 at any evaluation of the correlation
matrix during the optimization process. That is, we select 𝛿 as

𝛿 =

{
𝜀 − 𝜆min 𝜆min < 𝜀

0 𝜆min ≥ 𝜀,
(10)

where 𝜆min is the smallest eigenvalue of R. This selection is designed to reduce or eliminate the numerical issues while
controlling the smoothness of the profile of . Thus, we control 𝛿 indirectly via controlling 𝜀 directly. We highlight
that the interpretations drawn from the discussions regarding Figures 1 and 2 (ie, that the convergence of the optimal
hyperparameter can be tracked as 𝛿 is decreased) still hold if one varies 𝜀 directly instead of varying 𝛿.

As demonstrated in Figure 3, we propose the following iterative optimization procedure to leverage the smoothing
effect of nugget on  to estimate the hyperparameters and, simultaneously, the best nugget value. In our approach, we
first conduct the optimization with an overly large 𝜀 to have the profile of  greatly smoothed. Next, 𝜀 is incrementally
decreased and the optimization is repeated iteratively using the previous local optima as the initial guess(es) for the current
iteration until a desired value of 𝜀 is achieved.

The algorithm consists of 2 main loops. The outer loop is over p candidate values of 𝜀 stored in the vector 𝜺= [𝜀1, … , 𝜀p]
such that 𝜀i > 𝜀i + 1 > 0 for i = 1, … , p − 1 (eg, 𝜺 = [10−1, 10−2, … , 10−12]). In this loop, the goal is to first find the distinct
local optima of  for 𝜀1 and then track their evolution as 𝜀 is gradually decreased to 𝜀p. As we employ a gradient-based
optimization method (other methods can also be used) for each iteration over i,  is minimized mi times starting from mi
initial guesses (corresponding to the inner loop: see the next paragraph for details) to ensure global optimality. Because
we intend to record the evolution of the optimization solutions as 𝜀 (and, hence, 𝛿 and the profile of ) is varied, R is
replaced with R𝛿i (see Equations 7 and 10) in the inner loop (ie, during the mi minimizations) at the ith iteration.

wileyonlinelibrary.com
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FIGURE 3 Flowchart of our iterative approach for fitting a GP model: the 2 black dots on the green dashed curve in the figure mark the
local optima of  when 𝜀 = 𝜀0. Tracking the evolution of these points on the profile of  as 𝜀 is decreased constitutes the essence of our
iterative optimization approach (for clarity, only 3 curves are shown). See the text for more details [Colour
figure can be viewed at wileyonlinelibrary.com]

For i = 1 (corresponding to 𝜀1), the m0 = m1 initial points used in the inner loop are generated via a space-filling design
of experiment (DoE) method (eg, Latin hypercube sampling [LHS]) and stored in the Z0 = Z1 matrix (which stores each
initial point in a row vector). It must be noted that, provided that 𝜀1 is large enough (which will most likely* result in
using a large nugget), m0 does not need to be large. This is because, as explained earlier in this section, an overly large 𝜀1
will render the profile of  very smooth with only a few local optima. For the next iterations (ie, i > 1), the optimization
processes in the inner loop at iteration i are initialized from the distinct optimization solutions at iteration i− 1 (collectively
denoted by𝜴 in the flowchart). For instance, if m0 = m1 = 10 and the 10 optimizations result in 3 distinct solutions, then
m2 = 3. We emphasize that, for i > 1, the optimization processes are quite fast because from one iteration to the next (i)
the number of distinct solutions generally decreases, ie, mi ≤ mi − 1 , and (ii) the location of local optima (see the green
and red profiles in the figure within the flowchart) changes in a small neighborhood, and hence, the optimizations of the
likelihood function converge fast.

At the end of the ith iteration, the best solution is selected from the set of local optima stored in 𝜴i. Then, the
leave-one-out cross-validation (LOO CV) error of the corresponding GP model, vi, is calculated via a closed-form solution
(which only uses the training data set and does not require any model fitting procedure49). The output of the algorithm is
the GP model whose LOO CV error is the least. We elaborate on this criterion in Section 3.2.

3.2 Final value of the nugget
In GP modeling, the nugget is used to circumvent numerical issues (associated with the inversion of the correlation
matrix) and/or represent legitimate noise if the observations are noisy. In the former case, perhaps the most common
implementation is to check the condition number 𝜅 of R (defined as the ratio of R's maximum eigenvalue 𝜆max to R's min-
imum eigenvalue 𝜆min). In particular, if 𝜅 > 𝜅max for some predetermined value 𝜅max (eg, 1016), the matrix is determined
to be ill-conditioned and, subsequently, a nugget is used to replace R with R𝛿 = R + I𝛿 for some appropriately chosen 𝛿.

*We say most likely because in some cases (eg, for small data sets in large dimensions), 𝜆min might be quite large itself, resulting in a zero nugget (see
Equation 10).

wileyonlinelibrary.com
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FIGURE 4 Fitting GP models to noisy data sets with the GPM and GPfit packages: training data sets are with (panel A) small and
(panel B) large noise variance. Both packages are run with default settings (the Gaussian correlation function is used in GPfit) [Colour
figure can be viewed at wileyonlinelibrary.com]

Although correlation matrices are theoretically positive semidefinite, 𝜆min < 0 sometimes occurs due to the numerical
errors during optimization (eg, in the inner loop in Figure 3). Hence, as aforementioned, we use the criterion 𝜆min < 𝜀 to
designate ill-conditioning of R. Following this, we use Equation 10 to select the nugget value and ensure that the mini-
mum eigenvalue of R𝛿 = R + I𝛿 exceeds the specified 𝜀 at any evaluation of the correlation matrix during the optimization
of likelihood function. We note that, with this approach, the value of 𝛿 is directly a function of both 𝜀 and 𝝎 since 𝜆min is
determined by R, which depends strongly on 𝝎.

Provided that the right value is chosen for 𝜀, the above procedure can be employed to use the nugget and address,
simultaneously, numerical issues and noise. In our approach, the outer loop of the algorithm summarized in Figure 3
helps us to estimate this 𝜀 by searching over the elements of 𝜺= [𝜀1, … , 𝜀p]. That is, the final value of the nugget is chosen
from the candidate values to minimize the LOO CV error of the GP model on the training data set.

In Section 4, seven noiseless problems of different dimensionalities and training data set sizes are examined to test the
capability of our approach in addressing numerical issues. To illustrate how our approach may be used to handle noisy
data sets, we consider the y = − 10x4 + 5x3 + 6x2 − 4 + 𝜀 function, where �̃�N(0, 𝜎) is the added zero-mean noise with
variance 𝜎2. We generated 2 training data sets of size 50 using evenly spaced points in the x ∈ [−1, 1] region with 2 values
for 𝜎, ie, one small and one large (0.3 and 2, respectively). Then, we used both our GPM package and the GPfit package
to fit GP models to these 2 data sets. In our simulations, we used the default settings for both packages and, for consistent
comparisons, chose the correlation function as Gaussian in GPfit. Similar to Section 4, we compare the performance of
our approach against GPfit because it is widely used to fit GP models and has been shown to outperform other GP-fitting
packages.31

The resulting models, the training data sets, and the true function are plotted in Figure 4. It is evident that with small
noise (Figure 4A), both packages can fit quite accurate models. However, for large amounts of noise (Figure 4B), only
GPM can adapt and fit a GP model that captures the true behavior of the underlying function. We emphasize that the
GPfit package can address noise and fit a sufficiently accurate GP model with the right input settings. However, generally,
it is not known a priori if, and more importantly to what extent, a data set is noisy. Therefore, having an automated method
to detect small to large amounts of noise in GP modeling is attractive.

3.3 Implementation details of the GPM package
We recommend setting 𝜺 = [10−2, 10−3, … , 10−12] and m0 = 5. The 5 different initial optimization points of the inner
for loop, Z1, for the first iteration (ie, i = 1 in Figure 3) are generated via LHS over the [−10, 5]D space, where D is the
dimension of x. We have found these settings to provide an accurate and efficient set of solutions for the local optima of 
with large 𝜀1. The solutions are then reduced to a set of distinct solutions (denoted by 𝜴1), 𝜀 is decremented to 10−3, and
optimization is performed once more over [−10, 5]D but this time via Z2 = 𝜴1 as the initial guesses of the optimization.
This process is then repeated with 𝜀 decreasing by 1 on the log10 scale (ie 10−3, 10−4, 10−5 … ) until either (i) 𝜀 = 10−12

or (ii) the LOO CV increases from one optimization iteration to the next. The first termination criterion of 𝜀 = 10−12 is
chosen to ensure that there are no numerical issues when inverting the correlation matrix. LOO CV has frequently been
used to characterize the model quality without a validation data set and is convenient due to its analytical closed-form
representation50 for GP modeling. For our purposes, if the LOO CV increases, it can be assumed that the performance of
the metamodel has deteriorated and the optimal value of 𝜀 has been found.

wileyonlinelibrary.com
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Our approach is more efficient than the typical optimization approach that requires many initial guesses and is imple-
mented in packages such as GPfit (which searches over 𝝎 ∈ [−10, 10]D). As the dimension D or the size of the data set
increases, the objective function becomes much more complex and finding the global solution becomes extremely expen-
sive. Additionally, by requiring fewer optimization iterations, the inverse of the correlation matrix must be calculated far
fewer times, which greatly improves the computational efficiency when working with large training data sets.

It should be noted that all the aforementioned default values in the GPM package can be adjusted by the user. The
package contains extensive documentation for this purpose, and we refer the reader to that for more details. We have
developed the GPM package both with experts (who can tune all the default values) and with novice users (who only
need to model the mapping function between a set of inputs and a set of outputs) in mind. For instance, the user can
set the type of the correlation function, the search space, the number of optimization iterations, and so on. Once fitted,
the package can also be used to directly predict the gradient of a function, which is very attractive when, for example,
GP modeling is used for optimizing an expensive function. Finally, we highlight that we have provided a visualization
function in GPM that allows the user to easily plot any D-dimensional GP model prediction along with the associated
uncertainty bounds (for D > 2, the user can choose 2 inputs for plotting and set fixed values for the rest of the inputs).

4 GPM COMPARISON WITH GPFIT

To illustrate how our approach improves the efficiency and performance of GP models, we compare the performance
of GPM against that of the popular R package GPfit31 for a variety of analytical problems. GPfit was chosen as the
benchmark because it is viewed as the state-of-the-art package for GP modeling. The first major advantage of GPM is
computational cost improvement, ie, the efficiency of the algorithm in Figure 3 in estimating the optimal hyperparame-
ters. The second claim is that our approach can fit more accurate models by finding the global optimum solution of  in
Equation 2 (rather than a local solution) and choosing a better value for the nugget. To test these claims, we will compare
the fit time and MSE of a validation (also known as test) set for both packages. In all cases, the default settings are used
for both packages in the fitting process. In addition, care was taken to ensure that all problems were run on the same
computer without overloading either the CPU or memory to ensure that all comparisons are fair.

In the comparison, we present 7 analytical examples (see the Appendix for details) of various sizes in terms of train-
ing set and dimensionality D. For each example, training sets of size 10D, 20D, and 40D were generated. For statistical
purposes, each problem was performed with 20 unique training sets except the 40D case in Example 7 for which only 10
training sets were used due to computational costs of GPfit. In total, 390 GP models were fitted with each package. The
mean fit time and MSE over the 20 replicates are reported for each problem. To calculate the MSE, a single validation set
of size 10 000 was generated for each example problem independent of the training sets. All the training and validation
data sets were generated via Sobol sequence51 due to its ability to efficiently generate very large space-filling data sets.

The MSE and fit time results for both packages across all examples and training set sizes are provided in Table 2.
We summarize the findings as follows. (i) Except for Examples 1 and 2, GPM always outperforms GPfit in terms of
computational costs, often by a large margin (compare columns 5 and 6 in Table 2). In the cases where GPfit outperformed
GPM, the difference was small. (ii) Excluding Example 1 with DoE size 10D, the MSE achieved by GPM is no larger than
that of GPfit (compare columns 3 and 4 in Table 2). Additionally, the raw MSE values in this case (example 1, 10D) were
too high for the metamodels to be considered accurate and only 3 of the 20 replicates had a lower MSE when fitted with
GPfit compared to GPM. (iii) The performance improvement for GPM in terms of time generally grows as either the
dimensionality or the DoE size increases, whereas performance improvement in terms of accuracy generally grows as the
DoE size increases.

Regarding (ii), we note that, for simple problems (such as Examples 1 and 2), the fitting costs are negligible, and hence,
improving the model accuracy (ie, reducing the MSE) while spending a few more seconds for fitting seems reasonable. In
particular, adaptively controlling the 𝜀 parameter may result in solving the optimization more times in total than if the 𝜀
parameter had been set to the final value from the start with a greater number of initial guesses. Thus, the fitting cost for
small problems might increase a few seconds but significant computational savings are achieved for large problems. For
instance, in Example 7 with 40D, GPM drastically improved the fit time from over 18 hours to under 3 hours.

To enable a better comparison, we visualize the results reported in Table 2 in Figure 5A, which shows the ratio of the
mean fit times achieved by GPM to those achieved by GPfit for all the examples and training data set sizes. Since ratios
smaller than 1 indicate lower computational costs, GPM is faster than GPfit. The same argument holds for Figure 5B
where the ratio of the MSEs of the 2 packages are plotted.
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TABLE 2 Comparison of GPM and GPfit based on mean squared error (MSE) and mean fit time: the reported data, except
for Example 7 with 40D samples, are averaged over 20 replicates. For Example 7 with 40D samples, 10 replicates were used
due to computational costs of GPfit

Example Training Mean GPM Mean GPfit Mean GPM Mean GPfit
Number Set Size MSE MSE Fit Time, seconds Fit Time, seconds
(Dimension)

1 (2D) 10D 3.01E-01 2.86E-01 4.38E-01 6.74E-01
20D 7.24E-02 8.31E-02 1.26E + 00 1.24E + 00
40D 8.24E-06 1.00E-03 9.52E + 00 7.33E + 00

2 (3D) 10D 6.83E-08 6.96E-08 9.60E-01 1.82E + 00
20D 2.03E-09 5.70E-09 4.40E + 00 4.44E + 00
40D 5.02E-11 9.68E-10 2.04E + 01 1.87E + 01

3 (6D) 10D 3.03E-02 3.03E-02 7.29E + 00 3.34E + 01
20D 1.34E-02 1.34E-02 1.87E + 01 1.19E + 02
40D 6.22E-03 6.22E-03 7.26E + 01 4.53E + 02

4 (7D) 10D 4.36E-09 8.15E-08 2.10E + 01 6.74E + 01
20D 4.50E-10 1.04E-08 8.34E + 01 2.86E + 02
40D 1.17E-10 2.70E-09 5.14E + 02 1.61E + 03

5 (8D) 10D 7.19E-02 1.06E-01 3.06E + 01 1.51E + 02
20D 7.81E-03 1.87E-02 1.78E + 02 6.89E + 02
40D 2.38E-03 7.89E-03 8.18E + 02 3.98E + 03

6 (10D) 10D 1.90E-03 1.96E-03 6.43E + 01 6.95E + 02
20D 1.31E-03 1.30E-03 2.35E + 02 3.46E + 03
40D 9.18E-04 9.52E-04 1.23E + 03 1.75E + 04

7 (15D) 10D 2.17E-03 2.33E-03 2.17E + 02 3.51E + 03
20D 2.80E-04 8.82E-04 4.53E + 02 1.42E + 04
40D 8.43E-05 5.03E-04 2.54E + 03 6.78E + 04

FIGURE 5 Comparison of GPM and GPfit based on mean squared error (MSE) and mean fit time for the analytical problems: the ratio of
the (panel A) mean fit time and (panel B) MSE of GPM to GPfit. Any number below the dashed horizontal line indicates the superior
performance of our GPM package. The data in panel A summarize those corresponding to columns 5 and 6 in Table 2. Similarly, panel B
summarizes the data in columns 3 and 4 in Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]

The adaptive control scheme for the 𝜀 parameter allows the fitting process to adapt to the specific training data set at
hand. In general, the optimal 𝜀 parameter tends to decrease as the data set size increases (as long as the training points are
not so close to result in numerical issues). This intuitively makes sense because, as the size of the training set increases,
there is more knowledge of the underlying function and the fitted model should need less smoothing. In the case of data
sets that are prone to numerical issues (regardless of the dimensionality of the problem or the size of the training data
set), the required nugget can also be estimated via our adaptive approach. For example, when examining Example 1 with
a training data set of size 20D, the typical optimal value for 𝜀 over the 20 fitted models via GPM was found to be 10−4.
However, for some repetitions, the optimal value was 10−2, in which case at least two data points were very close to one

wileyonlinelibrary.com
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another, and thus, a larger constraint was needed to handle the numerical issues associated with the ill-conditioning of
the correlation matrix.

In summary, we conclude from these results that GPM is able to consistently fit GP models considerably faster and
with comparable performance for smaller DoEs and greatly improved performance for large DoEs when compared to
the popular GP package GPfit. The time savings and better prediction performance are more noticeable as the problem
dimensionality or the DoE size increases.

5 GPM ENGINEERING APPLICATION

We now further test our approach on an engineering problem. As highlighted by the Materials Genome Initiative, material
design and synthesis is one of the fastest growing disciplines with the current grand challenge of designing materials
with targeted properties.52-57 One such area of interest is to predict the properties of new materials computationally to
expedite the discovery of superior materials. Here, we examine the case of learning the constitutive law of a 2D hyperelastic
composite representative volume element, for which no closed-form constitutive law exists. Without a constitutive law,
a boundary value problem must be solved for each integration (also known as Gauss or material) point of a meshed
structure in the finite element method (FEM).58 This approach can be prohibitively expensive and hence restricts the use of
FEM in materials design. In our composite material system, the matrix and inclusions are modeled via the Neo-Hookean
and Arruda-Boyce hyperelastic laws, respectively, and the goal is to learn the constitutive law of the composite at the
microscale as a function of the applied macroscopic strains (ie, the boundary conditions). While we do not know the exact
nature of the constitutive law, we do know that it is highly nonlinear and the material response can vary greatly depending
on whether the material is in a state of tension or compression. In order to accurately capture the nonlinear phenomena
across a wide range of boundary conditions, a large training set is needed.

In this case, the inputs for our data set are 3 boundary conditions, representing the 2 axial strains and shear strain,
to a predetermined 2D composite microstructure. The output is a single scalar value produced by the FEM simulation
corresponding to the homogenized potential density. The FEM simulation also provides the gradients of the response with
respect to the 3 boundary conditions. The gradients correspond to the stress in the microstructure, which is needed to
perform FE2. The motivation behind this work is to replace the need for nested FEM simulations with a fast and efficient
surrogate model to predict the material behavior (ie, gradient of the homogenized response) at the microscale.20 Our data
set consists of 1000 observations of a single microstructure with a unique set of boundary conditions for each data point.
Based on our experience, a response error of less than 1% and a gradient error of less than 5% are necessary to confidently
use the metamodel.

The 1000 data points were determined by the Sobol sequence.51 Two hundred of these points were separated to serve
as an independent validation data set. The remaining 800 data points were used for training. GPM was then used to fit
models using 100 to 800 data points in increments of 100 to study the convergence of the prediction error as the size of
the training data set increases. Following the algorithm in Figure 3, each data set was fitted using all the 4 correlation
functions available in GPM (power exponential, Gaussian, lifted Brownian, and lifted Brownian with 𝛾 = 1). Since we are
assuming that the response is smooth and differentiable, we would expect the exponent p and 𝛾 for the power exponential
and lifted Brownian correlations (see Table 1) to be equal to 2 and 1, respectively.

To measure the prediction performance of the models, the (normalized) percent response error was then calculated on
the validation data set. The percent response error is defined as

e𝑦 = 100 ×

√√√√ 200∑
i=1

(𝑦i − �̂�i)2

𝑦2
i

%, (11)

where yi and �̂�i are, respectively, the finite element analysis and predicted responses for the ith sample. Similarly, the
percent gradient error was also calculated defined as

eg = 100 ×

√√√√ 200∑
i=1

‖∇𝑦i − ∇�̂�i‖2
2‖∇𝑦i‖2

2
%, (12)

where ∇yi and ∇�̂�i store the response gradients calculated via, respectively, the finite element analysis and the fitted
metamodel. ||·||2 denotes the L2-norm of a vector.
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FIGURE 6 Convergence of prediction errors for the hyperelastic representative volume element example: prediction errors of (panel A)
the response and (panel B) its gradients decrease as the size of the training data set increases. The 4 available correlation functions in the
GPM package are used for training [Colour figure can be viewed at wileyonlinelibrary.com]

As suspected, the estimates of p and 𝛾 for the power exponential and lifted Brownian correlations, respectively, were
2 and 1 for all data sets. Figure 6 illustrates the percent response error and the percent gradient error as a function of
the training set size and the correlation function used. A consistent improvement is seen in predicting both the response
and its gradient as the training size increases across all correlation functions. In this problem, the Gaussian correlation
provides the best results: with the largest training set of size 800, the model is able to achieve a response error of less than
0.5% and a gradient error of approximately 5%. From these results, we conclude that the improvements implemented in
GPM allow users to fit larger and more accurate models that can have high-enough fidelity that the gradient of the model
can accurately be predicted.

6 CONCLUSION AND FUTURE WORK

In this work, we have presented a novel method to fit GP models. The approach, implemented in the R package GPM,
is shown to be more computationally efficient and have better predictive accuracy than the popular GPfit package. Our
approach enables more efficient GP modeling by leveraging the nugget parameter's effect on the log-likelihood function
and employing cross-validation for estimating the best nugget value. We illustrated how GPM can automatically handle
noisy data sets and, in the comparative study on analytical examples, demonstrated that the improved efficiency and accu-
racy are the most significant for models trained on large data sets and/or high dimensions. Additionally, models trained
on relatively large data sets were accurate enough to predict the gradient of the response in the engineering application.
This was demonstrated by improving the prediction of the stress of a hyperelastic material, which required approximat-
ing the gradient of the GP model. The applications for such an approach are wide reaching in sciences and engineering
fields as data become more readily available.
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APPENDIX

The full description of the example problems used in Section 4 is provided below.

1. 2D 6-hump camelback function with multiple local minima and maxima48

𝑓 (x) =

(
4 − 2x2

1 +
x4

1

3

)
x2

1 + x1x2 +
(
−4 + 4x2

2
)

x2
2

x1 ∈ [−2, 2] , x2 ∈ [−1, 1]

https://doi.org/10.1002/nme.5751
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2. 3D problem used to simulate the engineering mechanics of a beam bending problem45

𝑓 (x) = 4
109 ∗

x3
1

x2 ∗ x3
3

x1 ∈ [10, 20] , x2 ∈ [1, 2] , x3 ∈ [0.1, 0.2]

3. 6D Hartmann function frequently used to validate optimization routines59

𝑓 (x) = − 1
1.94

[
2.58 +

4∑
i=1

𝛼i𝑒𝑥𝑝

(
−

6∑
𝑗=1

A𝑖𝑗

(
x𝑗 − P𝑖𝑗

)2
)]

where xi ∈ [0, 1] for i = 1, 2, … , 6, 𝛼 = [1.0, 1.2, 3.0, 3.2], and

A =

⎛⎜⎜⎜⎜⎝
10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

⎞⎟⎟⎟⎟⎠

P = 10−4

⎛⎜⎜⎜⎜⎝
1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8723 5743 1091 381

⎞⎟⎟⎟⎟⎠
4. 7D function used to model the cycle time for a piston60

𝑓 (x) = 2𝜋
√√√√ x1

x4 + x2
2

(
x5x3x6

V 2x7

)
where V = x2

2x4

(√
A2 + 4x4x5

(
x6
x7

))
and A = x5x2 + 19.62x1 −

x4x3

x2

x1 ∈ [30, 60] , x2 ∈ [0.005, 0.020] , x3 ∈ [0.002, 0.010] , x4 ∈ [1000, 5000] ,
x5 ∈ [90 000, 110 000] , x6 ∈ [290,296] , x7 ∈ [340,360]

5. 8D function used to model the flow through a borehole61

𝑓 (x) = 2𝜋x3 (x5 − x6)
⎛⎜⎜⎜⎝log

(
x2

x1

)⎡⎢⎢⎢⎣1 + 2x7x3

log
(

x2
x1

)
x2

1x8 +
x3

x4

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
−1

x1 ∈ [0.05, 0.15] , x2 ∈ [100, 50 000] , x3 ∈ [63 070, 115 600] , x4 ∈ [63.1, 116] , x5

∈ [990, 1110] , x6 ∈ [700,820] , x7 ∈ [1120, 1680] , x8 ∈ [9855, 12 045]

6. 10D function used to model the local potential of a nonlinear elastic composite23

𝑓 (x) = 9
2

x9𝜀
2
m + x8x10

1 + x7

[
𝜀𝑒𝑞

x10

]1+x7

where 𝜀m = 1
3
𝑇 𝑟 (𝜺), 𝜀𝑒𝑞 =

√
2
3
(𝜀d ∶ 𝜀d), 𝜀d = 𝜺− 𝜀m1, 𝜺 =

⎛⎜⎜⎝
x1 x6 x5

x6 x2 x4

x5 x4 x3

⎞⎟⎟⎠, xi ∈ [−10−3, 10−3] for i= 1, 2, … , 6, x7 ∈ [0.2,0.8],

x8 ∈ [2, 8], x9 ∈ [15, 25], x10 ∈ [0.8,1.2.]
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7. 15D function used previously to test the accuracy of neural networks23

𝑓 (x) =

√√√√ 15∑
i=1

x2
i

xi ∈ [−1, 1] for i = 1, 2, … , 15
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