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Multi-fidelity modeling and calibration are data fusion tasks that ubiquitously arise in engi-
neering design. However, there is currently a lack of general techniques that can jointly fuse
multiple data sets with varying fidelity levels while also estimating calibration parameters.
To address this gap, we introduce a novel approach that, using latent-map Gaussian pro-
cesses (LMGPs), converts data fusion into a latent space learning problem where the rela-
tions among different data sources are automatically learned. This conversion endows our
approach with some attractive advantages such as increased accuracy and reduced overall
costs compared to existing techniques that need to take a combinatorial approach to fuse
multiple datasets. Additionally, we have the flexibility to jointly fuse any number of data
sources and the ability to visualize correlations between data sources. This visualization
allows an analyst to detect model form errors or determine the optimum strategy for
high-fidelity emulation by fitting LMGP only to the sufficiently correlated data sources.
We also develop a new kernel that enables LMGPs to not only build a probabilistic
multi-fidelity surrogate but also estimate calibration parameters with quite a high accuracy
and consistency. The implementation and use of our approach are considerably simpler and
less prone to numerical issues compared to alternate methods. Through analytical exam-
ples, we demonstrate the benefits of learning an interpretable latent space and fusing mul-
tiple (in particular more than two) sources of data. [DOI: 10.1115/1.4054520]
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1 Introduction
Computer models are increasingly employed in the analysis and

design of complex systems. For a particular system, there are typi-
cally various models available whose fidelity is generally related to
their costs; i.e., accurate models are generally more expensive. In
such a scenario, multi-fidelity modeling techniques are adopted to
balance costs and accuracy when using all these models in the anal-
yses [1,2]. Additionally, computer models typically have some cal-
ibration parameters which are estimated by systematically
comparing their predictions to experiments/observations [3].
These parameters either correspond to some properties of the under-
lying system being modeled or act as tuning knobs that compensate
for the model deficiencies. In this paper, we introduce a versatile,
efficient, and unified approach for emulation-based multi-fidelity
modeling and calibration (henceforth, we use the term data fusion
to refer to both multi-fidelity modeling and calibration because
they all involve fusing or assimilating multiple sources of data).
Our approach is based on latent-map Gaussian processes and its
core idea is to convert data fusion into a learning process where dif-
ferent data sources are related in a nonlinearly learned manifold.
Over the past few decades, many data fusion techniques have

been developed for outer-loop applications such as design optimiza-
tion, sequential sampling, or inverse parameter estimation. For
example, multi-fidelity modeling can be achieved via space
mapping [4–6] or multi-level [7–9] techniques where the inputs
of the low-fidelity data are mapped via xl=F(xh). In this equation,
xl and xh are the inputs of low- and high-fidelity data sources,
respectively, and F(·) is the transformation function whose prede-
fined functional form is calibrated such that yl(F(xh)) approximates
yh(xh) as closely as possible. These techniques are particularly
useful in applications where higher fidelity data are obtained by suc-
cessively refining the discretization of the simulation domain [7,9],

e.g., by refining the mesh when simulating the flow over an airfoil.
The main disadvantage of space mapping techniques is that choos-
ing a near-optimal functional form for F(·) is iterative and very
cumbersome.
Two of the most important aspects of multi-fidelity modeling are

choosing the emulators that surrogate the data sources and formulat-
ing the relation between these emulators. Correspondingly, several
methods have been developed based on Gaussian processes (GPs)
[3], Co-Kriging [10], polynomial chaos expansions [11,12], and
moving least squares [13]. The interested reader is referred to
Refs. [2,14] for more comprehensive reviews on multi-fidelity mod-
eling and how they benefit outer-loop applications.
Multi-fidelity modeling is closely related to the calibration of

computer models since the latter also involves working with at
least two data sources where typically the low-fidelity one possesses
the calibration parameters. Besides the traditional ways of estima-
tion that are ad hoc and involve trial and error, there are more sys-
tematic methods that are based on generalized likelihood [15] or
Bayesian principles [16].
Among existing methods for multi-fidelity modeling and calibra-

tion, the most popular emulator-based method in engineering design
is that of Kennedy and O’Hagan (KOH) [3] which assimilates and
emulates two data sources while estimating calibration parameters
of the low-fidelity source (if there are any such parameters).
KOH’s approach is one of the first attempts that considers a
broad range of uncertainty sources arising during the calibration
and subsequent uses of the emulator. This approach has been
used in many applications including climate simulations [17], mate-
rials modeling [18], and modeling shock hydrodynamics [19].
KOH’s approach assumes that the discrepancies between the two

data sources are additive2 and that both data sources and the discre-
pancy between them can be modeled via GPs. The approach then
uses (fully [20,21] or modular [18,22–25]) Bayesian inference to
find the posterior estimates of the GPs as well as the calibration
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2Multiplicative terms have also been introduced to KOH’s approach but are seldom
adopted as they increase the identifiability issues and computational costs while negli-
gibly improving the mean prediction accuracy.
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parameters. The fully Bayesian version of KOH’s method offers
advantages such as low computational costs for small data sets or
quantifying various uncertainty sources (e.g., lack of data, noise,
model form error, and unknown simulation parameters).
However, obtaining the joint posteriors via Markov chain Monte
Carlo (MCMC) is quite effortful and expensive, especially in
high dimensions or with relatively large datasets. The modular
version of KOH’s approach addresses this limitation by typically
using point estimates for the GP hyperparameters of the low-fidelity
data [3,23]. These estimates are obtained via maximum likelihood
estimation (MLE) and, while they result in a small under-estimation
of uncertainties with small data, provide accurate mean predictions.
A major limitation of KOH’s approach and other reviewed data

fusion techniques is that they only accommodate two data sources
at a time. That is, the fusion process must be repeated p times if
there are p low-fidelity and one high-fidelity data sources. In addi-
tion to being tedious and expensive, this repetitive process does not
provide a straightforward diagnostic mechanism for comparing the
low-fidelity sources to identify, e.g., which one(s) perform similarly
or have the smallest model form error.
In this paper, we aim to address the abovementioned limitations

of the existing technologies for data fusion. Our primary contribu-
tions are threefold and summarized as follows. First, we convert
multi-fidelity modeling into a latent space learning problem. This
conversion is achieved via latent-map Gaussian processes
(LMGPs) and endows our approach with important advantages
such as flexibility to jointly fuse any number of data sources and
ability to visualize correlations between them. This visualization
provides the user with an easy-to-interpret diagnostic measure for
identifying the relations between different data sources. We
believe the joint fusion (of more than two sources) and the accom-
panying visualization aids reduce the overall costs of multi-fidelity
modeling compared to reviewed methods since they eliminate the
iterative process of data source selection and link the fusion
results across the iterations (note that our approach is also applica-
ble to problems with two data sources). Second, we develop a new
kernel function that enables LMGPs to not only build a probabilistic
multi-fidelity surrogate but also estimate calibration parameters
with high accuracy and consistency. Third, the implementation of
our approach is considerably simpler and less prone to numerical
issues compared to the reviewed technologies (especially KOH’s
approach).
The rest of the paper is organized as follows. In Sec. 2, we briefly

review the relevant technical background on GPs and LMGPs (see
Sec. 7 for Nomenclature). In Sec. 3, we introduce our approach to
multi-fidelity modeling and calibration while demonstrating its per-
formance on four pedagogical examples. In Sec. 4, we validate our
approach against GPs and KOH’s method on six analytic and engi-
neering examples. We conclude the paper in Sec. 5 by discussing
the advantages and limitations of our approach, considerations
that should be made in its application, and its application to multi-
response problems.

2 Emulation via Latent-Map Gaussian Processes
We review emulation via GPs and a variation of GPs (i.e.,

LMGP) for data sets that include categorical inputs. Throughout,
symbols or numbers enclosed in parentheses encode sample
numbers and are used either as subscripts or as superscripts. For
example, x(i) or x

(i) denote the ith sample in a training data set
while xi indicates the ith component of the vector
x = [x1, x2, . . . , xdx ]

T . We use h and l either as superscript or as
subscript to denote high- and low-fidelity data sources. For instance,
x(i)h and y(i)h denote, respectively, the inputs and output of the ith
sample in the high-fidelity data set. In cases where there is more
than one low-fidelity source, we add a number to the l symbol,
e.g., yl3 (x) denotes the third low-fidelity source. Lastly, we distin-
guish between the data source (or the underlying function) and
samples by specifying the functional dependence (e.g., y(x) is a

function while y and y are, respectively, a scalar and a vector of
values).
Denote the inputs and outputs of a system by dx-dimensional

vector x = [x1, x2, . . . , xdx ]
T and the scalar y. Assume the training

data come from a realization of a GP defined as η(x)= f(x)β+ ξ(x)
where f(x)= [ f1(x),…, fh(x)] are a set of pre-determined parametric
functions and β= [β1, …, βh]

T are the unknown coefficients. ξ(x) is
a zero-mean GP whose parameterized covariance function is

cov(ξ(x), ξ(x′)) = c(x, x′) = σ2r(x, x′) (1)

where σ2 is the process variance and r( · , · ) is a user-defined para-
metric correlation function. There are many types of correlation
functions [26,27], but the most common one is the Gaussian kernel

r(x, x′) = exp −
∑dx
i=1

10ωi (xi − x′i)
2

{ }
= exp((x − x′)TΩx(x − x′))

(2)

where ω = [ω1, . . . , ωdx ]
T , −∞<ωi <∞ are the roughness or

scale parameters (in practice the ranges are limited to −10 <ωi < 6
ensure numerical stability [26,28]) and Ωx= diag(10ω).
The correlation function in Eq. (2) depends on the distance

between two arbitrary input points x and x′. Hence, traditional
GPs cannot accommodate categorical inputs (such as gender and
zip code) as they do not possess a distance metric. This issue is
well established in the literature, and there exist a number of strat-
egies that address it by reformulating the covariance function such
that it can handle categorical variables [29–32]. In this paper, we
use LMGPs [33] which are recently developed and shown to outper-
form previous methods.
Let us denote the categorical inputs by t = [t1, . . . , tdt ]

T where
the total number of distinct levels for qualitative variable ti is mi.
For instance, t1= {92697, 92093} and t2= {math, physics, chemis-
try} are two categorical inputs that encode zip code (m1= 2 levels)
and course subject (m2= 3 levels), respectively. Inputs for mixed
(numerical and categorical) training data are collectively denoted
by u= [x;t], which is a column vector of size (dx+ dt) × 1. To
handle mixed inputs, LMGP maps categorical variables to some
points in a manifold. This mapping allows using any standard cor-
relation function such as the Gaussian which is reformulated as
follows:

r(u, u′) = exp{−‖z(t) − z(t′)‖22 − (x − x′)TΩx(x − x′)} (3)

where ‖·‖2 denotes the Euclidean 2-norm and z(t) = [z1(t),
. . . , zdz (t)]1×dz is the to-be-learned latent space point corresponding
to the particular combination of the categorical variables denoted by
t. To find these points in the latent space, LMGP first assigns a
unique vector (i.e., a prior representation) to each combination of
categorical variables. Then, it uses matrix multiplication to map
each of these vectors to a point in a manifold of dimensionality dz

z(t) = ζ(t)A (4)

where ζ(t) is the 1 ×
∑dt
i=1

mi unique prior vector representation of t

and A is a
∑dt
i=1

mi × dz matrix that maps ζ(t) to z(t). In this paper,

we use dz= 2 since it simplifies visualization and has also been
shown to provide sufficient flexibility for learning the latent rela-
tions [33].
We can construct ζ in a number of ways, see Ref. [33] for more

information on selecting the priors. In this paper, we use a form of
one-hot-encoding. Specifically, we first construct the 1 ×mi vector
νi = [νi1, νi2, . . . , νimi

] for the categorical variable ti such that νij =
1 when ti is at level j and νij = 0 when ti is at level k≠ j for, k∈ 1,
2, · · · , mi. Then, we set ζ(t) = [ν1, ν2, · · · , νdt ]. For instance, in
the above example with two categorical variables, t1= {92697,
92093} and t2= {math, physics, chemistry}, we encode the
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combination t= [92093, physics]T by ζ(t)= [0, 1, 0, 1, 0] where the
first two elements encode zip code while the rest encode the subject.
To emulate via LMGP, point estimates of A, β,ω, and σ2 must be

determined based on the data. These estimates can be found via
either cross-validation (CV) or MLE. Alternatively, Bayes’ rule
can be applied to find posterior distributions of the hyperparameters
if prior knowledge is available. In this paper, MLE is employed
because it provides a high generalization power while minimizing
the computational costs [27,34]. MLE works by estimating A, β,
ω, and σ2 such that they maximize the likelihood of n training
data being generated by η(x). This optimization can be equivalently
expressed as

[β̂, σ̂2, ω̂, Â] = argmin
β, σ2 , ω, A

n

2
log(σ2) +

1
2
log(|R|)

+
1
2σ2

(y − Fβ)TR−1(y − Fβ) (5)

where R and σ̂2 are now functions of both ω and A, log(·) is the
natural logarithm, |·| denotes the determinant operator, y= [y(1),
…, y(n)]

T is the n× 1 vector of outputs in the training data, R is
the n× n correlation matrix with the (i, j)th element Rij= r(x(i),
x( j)) for i, j= 1, …, n, and F is the n× h matrix with the (k, l )th
element Fkl= fl(x(k)) for k= 1, …, n and l= 1, …, h. By setting
the partial derivatives with respect to β and σ2 to zero, their esti-
mates can be solved in terms of ω and A as follows:

β̂ = [FTR−1F]−1[FTR−1y] (6)

σ̂2 =
1
n
(y − Fβ̂)TR−1(y − Fβ̂) (7)

Plugging these estimates into Eq. (5) and removing the constants
yield:

[ω̂, Â] = argmin
ω, A

n log(σ̂2) + log (|R|) = argmin
ω, A

L (8)

By minimizing L one can solve for Â and ω̂ subsequently obtain
β̂ and σ̂2 using Eqs. (6) and (7). While many heuristic global opti-
mization methods exist such as genetic algorithms [35] and particle
swarm optimization [36], gradient-based optimization techniques
based on, e.g., the L-BFGS algorithm [37], are generally preferred
due to their ease of implementation and superior computational effi-
ciency [26,38]. With gradient-based approaches, it is essential to
start the optimization via numerous initial guesses to improve the
chances of achieving global optimality [33,38].
After obtaining the hyperparameters via MLE, the response at

any x∗ is estimated via E[y∗] = f (x∗)β̂ + gT (x∗)V−1(y − Fβ̂) where
E denotes expectation, f (x∗) = [ f1(x∗), . . . , fh(x∗)], g(x∗) is an
n ×1 vector with the ith element c(x(i), x∗) = σ̂2r(x(i), x∗), and V is
the covariance matrix with the (i, j)th element σ̂2r(x(i), x(j)). Addi-
tionally, The posterior covariance between the responses at the two
inputs x∗ and x′ is cov(y∗, y′) = c(x∗, x′) − gT (x∗)V−1g(x′) +
h(x∗)(FTV−1F)−1h(x′)T where h(x∗) = (f (x∗) − FTV−1g(x∗)).
The above formulations can be easily extended to cases where the

data set is noisy. GPs (and hence LMGPs) can address noise and
smoothen data by using a nugget or jitter parameter, δ, which is
incorporated into the correlation matrix. That is, R becomes Rδ =
R + δIn×n where In×n is the identity matrix of size n× n. If the
nugget parameter is used, the estimated (stationary) noise variance
in the data will be δσ̂2. The version of LMGP used in this paper
finds only one nugget parameter and uses it for all categorical com-
binations; i.e., we assume that the noise level is the same for each
data set. LMGP can be modified in a straightforward manner to
have a separate nugget parameter (and hence separate noise esti-
mate) for each categorical combination.

3 Proposed Framework for Data Fusion
In this section, we first explain the core idea and rationale of our

approach in Sec. 3.1. Then, we detail how it is used for multi-
fidelity modeling and calibration in Secs. 3.2 and 3.3, respectively.
In the latter two subsections, we provide pedagogical examples to
facilitate the discussions and elaborate on the benefits of the
learned latent space in diagnosing the results. The notation intro-
duced in Sec. 2 is also used here (see Sec. 7 for Nomenclature).

3.1 The Rationale Behind Using a Latent Space for Data
Fusion. Factors that affect the fidelity of various data sources are
either known or not; in either case, they typically cannot be easily
used in the fusion process. Consider an engineering application
on predicting the fracture toughness of an alloy where an engineer
states “model A and model B achieve errors of 7% and 12% when
their predictions are tested against experimental data.” These inac-
curacies and their 5% difference can be due to many underlying
factors such as noise in the experiments, missing physics in either
of the models (especially model B), uncertain material properties
(i.e., calibration parameters) that affect the fracture behavior, or
numerical errors associated with the computer models (e.g.,
coarse discretization). It is very difficult to quantitatively incorpo-
rate all these factors into data fusion. Hence, existing fusion
methods such as that of the Kennedy and O’Hagan [3] assign
labels or qualitative variables to data (e.g., data from “model A”
or data from “experiments”) and then develop fusion formulas
that break down if the underlying assumptions are incorrect or if
there are many information sources.
We argue that data fusion should be based on learned quantita-

tive variables instead of assigned qualitative labels to enable
instruction-free and versatile fusion. We use LMGPs to learn
these quantitative variables (other methods can be used as well)
in a latent space that aims to encode the underlying factors which
distinguish different data sources. The power of latent spaces in
learning hidden factors is perhaps best exemplified in computer
vision where deep neural networks encode high-dimensional
images to a low-dimensional latent space where a single axis
learns smiling (Fig. 1(a)).
As shown in Fig. 1(b), data fusion via LMGP is achieved via the

following steps. First, we augment the various datasets with cate-
gorical inputs that aim to distinguish the data sources and also
add unknown calibration parameters (if applicable). Then, we fit a
single LMGP to the combined data set to obtain emulators of the
data sources and estimates of the calibration parameters (if applica-
ble). Finally, once the LMGP is trained, we visualize the learned
latent space to analyze the relations between the sources. In the fol-
lowing subsections, we provide more details on each of these steps.
Following the above--mentioned description, we summarize our

goals in data fusion as building emulators for each data source
(especially the high-fidelity one), estimating any unknown calibra-
tion parameters, and automatically obtaining the relation between
the various data sources. We also note that our approach can simul-
taneously fuse any number of data sources with any level of fidelity.
Without lack of generality, hereafter, we will assign only one source
as high fidelity and the rest of the sources are treated as low fidelity.
This assignment is adopted to simplify the descriptions and does not
affect our approach at all since we do not use any knowledge on the
fidelity level during fusion (e.g., if there are two experimental and
three simulation data sets, we can assign any one of them as high-
fidelity and the rest as low-fidelity).
We also assume that the goal of the problem is to emulate the data

source with the highest fidelity level, which entails emulation of the
true system, and to estimate the best calibration parameters, if appli-
cable. To measure the accuracy of yli (x) with respect to yh(x), we
evaluate relative root-mean-squared error (RRMSE)

RRMSE (yli (x)) ≈

��������������������
(yli − yh)

T (yli − yh)

n × var(yh)

√
(9)
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where yli and yh refer to the vectors containing the outputs of yli (x)
and yh(x) at n input points (we use n= 104 throughout), and var(yh)
is the variance of yh.

3.2 Multi-Ffidelity Modeling via LMGP. Using LMGP for
multi-fidelity modeling is quite straightforward. Consider the case
where multiple (i.e., two or more) data sources with different
levels of accuracy are available, and the goal is to emulate each
source while (1) having limited data, especially from the most accu-
rate source, (2) accounting for potential noises with unknown vari-
ance, and (3) avoiding a priori determination of how different
sources are related to each other. The last condition indicates that
we do not know (1) how the accuracy of the low-fidelity models
compare to each other, and (2) if low-fidelity models have inherent
discrepancy which may be additive or not. While not necessary, we
assume it is known which data source provides the highest fidelity
because this source typically corresponds to either observations/
experiments or a very expensive computer model.
We assume nh high-fidelity samples are available whose inputs

and output are denoted by xh and yh, respectively. We also
presume that the data set obtained from the ith low-fidelity source
has nli samples where the inputs and outputs are denoted via xli
and yli , respectively.
With the above-mentioned points in mind, we use two examples

in the following subsections to demonstrate our approach to multi-
fidelity modeling.

3.2.1 A Simple Analytical Example. We consider a case with
four data sources and use the following functions to generate data
(we do not corrupt the data with noise and study the effect of
noise in Sec. 4.1)

yh(x) =
1

0.1x3 + x2 + x + 1
, −2 ≤ x ≤ 3 (10.1)

yl1 (x) =
1

0.2x3 + x2 + x + 1
, −2 ≤ x ≤ 3 (10.2)

yl2 (x) =
1

x2 + x + 1
, −2 ≤ x ≤ 3 (10.3)

yl3 (x) =
1

x2 + 1
, −2 ≤ x ≤ 3 (10.4)

where the low-fidelity sources have a nonlinear bias (compare the
denominators) and are not ordered by the accuracy with respect to
yh(x) (Table 1). Note that we do not use this knowledge of relative
accuracy during multi-fidelity modeling via LMGP. Rather, by only
using the datasets in LMGP, we aim to inversely discover this rela-
tion between the fidelity levels.
To perform data fusion with LMGP, we first append the inputs

with one or more categorical variables that distinguish the data
sources. We can use any number of multi-level categorical vari-
ables. That is, we can either (1) select a single variable with at
least as many levels as there are data sources or (2) use a few multi-
level categorical variables with at least as many level combinations
as there are data sources. For example, with one categorical vari-
able, we can choose t= {h, l1, l2, l3}, t= {1, 2, 3, 4}, t= {1, a,
ab, 2}, or t= {a, b, c, d, e} for our pedagogical example with
four data sources (in the last case level e does not correspond to
any of the data sources).
For the remainder of this paper, we use two strategies for choos-

ing categorical variables, see Fig. 2. Strategy 1 uses one categorical
variable with as many levels as data sources, e.g., t= {a, b, c, d} or
t = {1, 2, 3, 4}. We add the subscript s to an LMGP that uses this
strategy since a single categorical variable is used to encode the
data sources. Strategy 2 employs multiple categorical variables
where the number of variables and their levels equals the number
of data sources3, e.g., ti= {a, b, c, d} with i= 1, 2, 3, 4. We place
the subscriptm to an LMGP that uses strategy 2 to indicate that mul-
tiple categorical variables are employed. As we explain below,
having more levels (or level combinations if more than one t is
used) than data sources provides LMGP with more flexibility to
learn the relation between the sources. This flexibility comes at
the expense of having larger A and higher computational costs.
As we demonstrate in Sec. 4, the performance of LMGP is relatively
robust to this modeling choice as long as there are sufficient training
samples and the number of latent positions does not greatly exceed
the number of hyperparameters in A. Regarding the latter condition,
note that when LMGP must find many latent positions with a small
A (i.e., a very simple map), performance may suffer due to local
optimality. For example, Strategies 2 with 4 data sources results
in Πdt

i=1mi = 44 = 256 latent positions (one for each possible cate-
gorical level combination where only 4 corresponds to data
sources) but there are only dz × Σdt

i=1mi = 2 × 16 = 32 elements in
A. These elements are supposed to map the 256 points in the
latent space such that the 4 points which encode the data sources
have inter-distances that reflect the underlying relation between
their corresponding data sources. Without sufficient data and regu-
larization, the learned map may provide a locally optimal solution.

Fig. 1 Data fusion as a latent space learning problem: (a) latent
representation of facial features: A latent representation enables
drastic reduction of dimensionality such that each axis encodes
a complex feature. (b) Data fusion with LMGP: Calibration inputs
and outputs, denoted by θ, are absent in multi-fidelity problems.

Table 1 Accuracy of data sources

yl1 (x) yl2 (x) yl3 (x)

RRMSE 0.23364 0.14626 0.72549

Note: RRMSEs of yli (x) are obtained using Eqs. (9) and (10).

3We have tried a binary encoding version of this strategy where a data source is
assigned its own categorical variable with two levels where 0 indicates the source is
inactive and 1 indicates that the source is active. We found the results of this case to
be similar to those of strategy 2 presented in the paper.
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The above description clearly indicates that LMGP can, in princi-
ple, fuse any number of data sets simultaneously. In practice, this
ability of LMGP is bounded by the natural limitations of GPs such
as scalability to big data or very high dimensions. The recent
advancements in GP modeling for big or high-dimensional data
[38–44] have addressed these limitations to some extent and can
be directly used in LMGP for multi-fidelity modeling in our future
works.
For the rest of this example, we select strategy 1 and append the

inputs via t= {1, 2, 3, 4} where the number of levels equals the
number of data sources. We assume the data sets are highly unbal-
anced and use Sobol sequence to sample from the functions in
Eq. (10) with nh= 3 and nl1 = nl2 = nl3 = 20. Upon appending, we
combine the entire data into a single training data set that is directly
fed into LMGP

X =

Xh 1nh×1
Xl1 2 × 1nl1×1
Xl2 3 × 1nl1×1
Xl3 4 × 1nl1×1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ and Y =

yh
yl1
yl2
yl3

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (11)

where 1n×1 is an n× 1 vector of ones. The fusion results are illustrated
in Fig. 3(a) and indicate that LMGP is able to accurately emulate each
data source, including yh(x) for which only three samples are pro-
vided. As illustrated in Fig. 3(b), a GP fitted to only data from
yh(x) provides poor performance due to lack of data.
The latent space learned by LMGP, shown in Fig. 3(c), provides a

powerful diagnostic tool for determining correlations between data
sources without prior knowledge. To understand the effect of these
positions on the correlation function and hence how different data
sources are related, we rewrite Eq. (3) as

r(u, u′) = exp{−(z − z′)T (z − z′)} · exp{−(x − x′)TΩx(x − x′)}

(12)

Plugging the latent positions into Eq. (12) shows that a relative
distance of Δz2 = (z − z′)T (z − z′) between two points scales the

correlation function by exp (−Δz2). Thus, we can interpret the latent
space as being a distillation of the correlations between the data
sources. Note, however, that the term exp{− (x−x′)TΩx(x−x′)},
which accounts for the correlation between outputs at different
points in the input space, remains the same as we change data
sources. Thus, our modeling assumption is that this correlation is
similar for all data sources. In layman’s terms, we expect each
data source to have a relatively similar shape. This is often true in
multi-fidelity problems and if this modeling assumption is not
met, LMGP estimates Ωx to provide the best compromise
between different sources, which may provide poor performance
in emulation for some or all sources. To avoid making such a com-
promise, we can use the latent space to identify the dissimilar data
source(s) and then repeat the fusion process after excluding them.
Note also that the objective function in Eq. (8) that is used to find

the latent positions is invariant under translation and rotation. In
order to find a unique solution, we enforce the following constraints
in two dimensions (more constraints are needed for dz> 2): latent
point 1 is placed at the origin, latent point 2 is positioned on the pos-
itive x axis, and latent point 3 is restricted to the y> 0 half-plane. We
assign yh(x) to position 1 for both of our strategies as it yields more
readable latent plots, but this choice is arbitrary and does not affect
the relative distances between the latent positions as shown in Sec. 4.
Returning to our example with the above constraints in mind, we

can see that the latent points corresponding to yh(x) and yl2 (x) are
close and the other points relatively distant, especially the point rep-
resenting yl3 (x). This observation matches with our knowledge of
the relative accuracies of the underlying functions with respect to
yh(x) (this knowledge is not provided to LMGP). In other words,
LMGP has accurately determined the correlations between the
data sources despite the sparse sampling for yh(x). Given that
yl2 (x) appears to be much more accurate than other low-fidelity
sources with respect to yh(x), one might consider fitting LMGP
using only data from these two sources rather than all of the data
to produce a more accurate high-fidelity emulator. The results of
this approach, shown in Fig. 3(d ), demonstrate that high-fidelity
emulation performance is actually equivalent with all sources

Fig. 2 Data preprocessing for multi-fidelity modeling via LMGP: We can use any
number of multi-level categorical variables when fusing data with LMGP. Shown
above are two strategies for choice of t for our example with four data sources. In
strategy 1, we use one categorical variable with four levels (one for each data
source) and assign each level to a unique data source. In strategy 2, we use a dif-
ferent categorical variable for each data source, and we give each categorical var-
iable four levels (one for each data source) for a total of 44=256 categorical
combinations. We assign only four of these combinations to our data sources
(only these four are enumerated in the figure), leaving 252 combinations
unused. Note that while LMGP finds latent positions for these 252 combinations,
the positions are not meaningful since they do not correspond to any of the data
sources. The number of elements in the A matrix (see Eq. (4) that must be esti-
mated for LMGP are 8 and 32 for the first and second strategies, respectively.
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used; i.e., using less accurate sources does not make our estimate of
yh(x) worse in this case because they include useful information
about yh(x).
We can also explicitly compare the correlations found by LMGP

to other similarity metrics, such as cosine similarity, Sc

SC(yh(x), yli (x)) =
yTh · yli

‖yh‖ · ‖yli‖
(13)

which we calculate using the same 10,000-point vectors as
RRMSE. The rough latent distances between the point correspond-
ing to yh(x) and the points corresponding to yl1 (x), yl2 (x), and yl3 (x)
are, respectively, 0.21, 0.10, and 0.90, which correspond to correla-
tions of, respectively, 0.96, 0.99, and 0.45 using Eq. (12). By con-
trast, the rough cosine similarities are, respectively, 0.994, 0.997,
and 0.911. While both measures show the same relative relation-
ships between data sources in terms of which source has the
most/least correlation/similarity, LMGP finds a much starker differ-
ence between yl3 (x) and yh(x) than the cosine similarity metric. The
correlations found by LMGP better match both the RRMSE mea-
sures and the intuitive relative similarity of the functions based on
looking at their plots. Note that while the cosine similarity is calcu-
lated using 10,000 test points from the analytic functions, LMGP
calculates its correlation measurements based purely on the training
data, i.e., three samples from the high-fidelity function and 20
samples from each low-fidelity function.
In order to support our assertion that a two-dimensional latent

space is typically sufficient to encode the relationships between
data sources, we show the latent space for LMGP fits all data
sources with dz= 3 in Fig. 4. We enforce the following constraints
in three dimensions: latent point 1 is placed at the origin, latent point
2 is positioned on the positive z1 axis, latent point 3 is restricted
to the z3 = 0 & z2 ≥ 0 half-plane, and latent point 4 is restricted
to z3≥ 0. These constraints reduce degrees-of-freedom by restrict-
ing translation, rotation, and reflection. In this case, we find that
the relative distances between the latent points in Fig. 4 are

nearly the same as those in Fig. 3(c), which indicates that two
dimensions are sufficient to encode the relationships between the
data sources.

3.2.2 Effect of Categorical Variable Assignment. We now con-
sider an example with three datasets drawn from the following func-
tions:

yh(x) = 0.1x3 + x2 + x + 1, −2 ≤ x ≤ 3 (14.1)

yl1 (x) = 0.2x3 + x2 + x + 1, −2 ≤ x ≤ 3 (14.2)

yl2 (x) = x2 + x + 1, −2 ≤ x ≤ 3 (14.3)

where we again sample via Sobol sequence with nh= 3,
nl1 = nl2 = 20, and do not apply noise to the samples. We create
30 unique quasi-random iterations (hereafter referred to as repeti-
tions) to examine the robustness of our approach to sampling vari-
ations. As shown in Fig. 5(a), both yl2 (x) and yl1 (x) are equally
accurate as they differ from yh(x) by a ±0.1x3 term. This time, we
fit LMGP using both strategies for categorical variable assignment
and examine the effect of this choice as well as the size of the train-
ing data sets on the results. We use the subscript All to denote the

Fig. 3 Approaches to data fusion: (a) LMGP with all available data: LMGP fit to all available
data is able to emulate each data source with high accuracy. The inaccuracy of yl3 does not
negatively impact high-fidelity emulation performance. (b) Standard GP: Standard GP fit to
only the three available high-fidelity samples performs poorly. (c) Learned latent space:
LMGP only uses four data sets to learn a latent space that indicates how “close” different
data sources are with respect to each other. While the data sets are quite unbalanced (nh=
3 and nl1 = nl2 = nl3 = 20), LMGP can clearly visualize the relative accuracy of each low-fidelity
model with respect to the high-fidelity data. (d ) LMGPwith only yl2 (x) and yh(x): Despite the fact
that yl2 (x) misrepresents yh(x) in some regions, LMGP is able to use correlations between the
two sources to accurately emulate yh(x) with approximately equivalent accuracy to when all
sources are used.

Fig. 4 Learned latent space with dz=3: LMGP finds the latent
positions to lie on a two-dimensional subspace
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fact that we fit LMGP to all available data and employ the subscripts
li to refer to an LMGP fitted via only yh and yli .
The latent space for LMGP using one categorical variable is dem-

onstrated in Fig. 5(b) and shows that this strategy enables LMGP to
learn that both sources have inaccuracy with respect to yh(x).
However, LMGP consistently finds one source to be significantly
more accurate than the other as a result of the sparse sampling.
By contrast, the positions found by LMGP using multiple categor-
ical variables are very inconsistent across repetitions and often esti-
mate one of the sources as being either extremely correlated or
uncorrelated with yh(x) (Fig. 5(c)). This inconsistency is because
LMGPm All has quite a few hyperparameters (1 roughness parameter
and 18 parameters in the A matrix), which are difficult to estimate
with scarce data. Across the repetitions of LMGPm All, at least
one data source is always found to be well correlated with yh(x)
so high-fidelity predictions are still good and much better than
fitting a traditional GP to only the high-fidelity data (Fig. 5(d )).
When we increase the available data to nh= 15, nl1 = nl2 = 50,
both LMGPs All and LMGPm All consistently (i.e., across repetitions)
find latent positions for the low-fidelity functions that are approxi-
mately equidistant from yh(x). We demonstrate this in Fig. 6, which
shows histograms of the distances between the latent points for yh(x)
and yl1 (x) or yl2 (x) in (a) and (b), respectively. Notably, LMGPm All

is less consistent in both cases, with a few poor-performing outliers
in Fig. 6(b). Interestingly, the positions for the two low-fidelity

sources are in opposite directions from yh(x) which agrees with
the fact that discrepancies are equal but of opposite sign (Figs.
5(e) and 5( f )). Notably, as we show in Fig. 7, this property is not
a result of the constraints we apply to the latent points during
fitting and persists even when no constraints are applied; i.e., all
three points lie on a line.
While we did not apply noise to the samples in these pedagogical

examples, as we demonstrate in Sec. 4, LMGP is fairly robust to
noise both with respect to emulation performance and finding
latent positions.

3.3 Calibration via LMGP. Calibration problems closely
resemble multi-fidelity modeling in that a number of high- and low-
fidelity data sets are assimilated or fused together. However, in such
problems, low-fidelity data sets4 typically involve calibration inputs
which are not directly controlled, observed, or measured in the
high-fidelity data (i.e., high-fidelity data have fewer inputs).
Hence, in addition to building surrogate models, one seeks to
inversely estimate these inputs during the calibration process.
Following previous sections, we denote the quantitative and

latent representation of the qualitative inputs via x and z,

Fig. 5 Approaches to categorical variable assignment: (a) accuracy of data sources: Both
low-fidelity sources are equally accurate, i.e., they have the same RRMSE with respect to
yh(x). (b) Latent space for LMGPs All: We show the latent space for one repetition, but LMGP
consistently finds one source to be close to and another to be distant from the position for
yh(x) across repetitions. (c) Latent space for LMGPm All: We show the latent space for one rep-
etition. The positions and relative distances are not consistent across repetitions. The gray
dots correspond to latent positions that do not correspond to any data source. (d ) High-fidelity
emulation performance across 30 repetitions: LMGP outperformsGP in high-fidelity emulation
for both categorical variable strategies. MSEs are calculated by comparing emulator predic-
tions to analytic function outputs at 10,000 points. (e) and (f ) Latent spaces with more data:
With more data, LMGPs All, shown in (e), and LMGPm All, shown in ( f ), consistently find
latent positions that accurately reflect the relative accuracies of the data sources. We do
not show the latent positions not corresponding to any data sources in ( f ), and as such, the
shown points do not conform to the 2D constraints.

4Generally built via computer simulations.
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respectively (note that z encodes data sources as per Sec. 3.2). While
these inputs are shared across all data sources, the low-fidelity data
sources have additional quantitative inputs, θ, whose “best” values
must be estimated using the high-fidelity data. We represent these
“best” values by θ∗ which minimize the discrepancies between
low- and high-fidelity data sets based on an appropriate metric. In
the case that one wishes to calibrate and assimilate multiple com-
puter models simultaneously, we assume that the calibration param-
eters are shared between the low-fidelity data sets and are expected
to have the same best value. Our estimate of θ∗ is denoted by θ̂ and
is obtained via MLE by modifying LMGP’s correlation function as

r

x

z

θ

⎡
⎢⎣

⎤
⎥⎦

(i)

,

x

z

θ

⎡
⎢⎣

⎤
⎥⎦

(j)⎛
⎜⎝

⎞
⎟⎠ = exp{−(z(i) − z(j))

T
(z(i) − z(j))}

× exp {−(x(i) − x(j))
TΩx(x(i) − x(j))}

× exp {−(θ(i) − θ(j))
TΩθ(θ

(i) − θ(j))}

(15)

where x (i), x ( j), Ωx, z
(i), and z ( j) are defined as before. θ (i) denotes

the calibration parameters of sample i and Ωθ is the diagonal matrix
of roughness/scale parameters associated with θ. When one or
both of the inputs to the correlation function lack calibration param-
eters (i.e., at least one of the inputs corresponds to a high-fidelity
sample), we substitute θ̂ in the last term of Eq. (15). If both
inputs are from the high-fidelity data, the term exp{− (θ (i)−
θ ( j))TΩθ(θ

(i)− θ ( j))} does not affect the correlation because

exp {−(θ̂ − θ̂)
T
Ωθ(θ̂ − θ̂)} = exp {0} = 1

Using Eq. (15), we see that in a calibration problem with multiple
data sources all the hyperparameters of an LMGP can be estimated
by MLE in the same way that a traditional GP is trained, i.e., by

optimizing the following objective function where the correlation
matrix is built via Eq. (15)

[ω̂, Â, θ̂, Ω̂θ] = argmin
ω, A, θ, biΩθ

n log (σ̂2) + log (|R|) = argmin
ω, A, θ, Ωθ

L,

(16)

Preprocessing the data for calibration via LMGP is schematically
illustrated in Fig. 8. Following the same procedure described in Sec.
3.2, we append the inputs with categorical variables to distinguish
data sources. We also augment the high-fidelity inputs with some
unknown values to account for the missing calibration parameters.
Once the mixed data set that contains all the low- and high-fidelity
data are built, we directly use it in LMGP to not only build emula-
tors for each data source but also estimate θ̂. Similar to multi-fidelity
modeling, any number of data sets can be simultaneously used via
LMGP for calibration.
We now illustrate the capabilities of LMGPs for calibration via

two analytical examples where there are one high-fidelity data
source yh(x) and up to two low-fidelity data sources, denoted by
yl1 (x) and yl2 (x). We presume that in both examples the goals are
to accurately emulate the high-fidelity data source and estimate
the calibration parameters. We note that once an LMGP is
trained, it provides an emulator for each data source but here we
only evaluate accuracy for surrogating yh(x) since much fewer
data points are available from it, and hence, emulating it is more
difficult.

3.3.1 A Simple Calibration Problem. For our first example, we
consider the polynomials in Eq. (17) as data sources and take five
samples from yh(x) and 25 samples from each of yl1 (x) and yl2 (x)
(none of the datasets are corrupted with noise)

yh(x) = 0.1x3 + x2 + x + 1, −2 ≤ x ≤ 3 (17.1)

yl1 (x) = θx3 + x2 + x + 1, −2 ≤ x ≤ 3, −2 ≤ θ ≤ 2 (17.2)

yl2 (x) = θx3 + x2 + 1, −2 ≤ x ≤ 3, −2 ≤ θ ≤ 2 (17.3)

We set θ∗ as 0.1 because it is the true value of the coefficient on
the leading x3 term. Note that yl1 (x) can match yh(x) perfectly with
an appropriate choice of θ; i.e., yl1 (x) has no model form error when
θ̂ = 0.1 (Fig. 9(a)). Conversely, no value of θ allows yl2 (x) to match
yh(x) since yl2 (x) has a linear model form error. When solving this
calibration problem, we assume there is no knowledge on
whether low-fidelity models have discrepancies and expect the
learned latent space of LMGP to provide diagnostic measures that
indicate potential model form errors.
As shown in Fig. 9(b), the learned latent positions by LMGP are

quite consistent with our expectations despite the fact that limited
and unbalanced data are used in LMGP’s training. It is evident

Fig. 7 Latent space with no constraints: The relative relation-
ships between the data sources in the latent space remain the
same without applying constraints to the locations of the points

Fig. 6 Histogram of latent distances: The above figure shows a histogram of the relative distances across 30 repetitions
between yh and each low-fidelity source for both strategies. (a) yh and yl1 : Both strategies find similar distances, with
LMGPm All being only slightly less consistent. (b) yh and yl2 : Both strategies again find similar distances. This time,
however, LMGPm All displays a higher number of poor-performing outliers.
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Fig. 8 Preprocessing of data for calibration: Multiple data sets are combined in a specific way and then directly used by LMGP.
The high-fidelity data are augmented with NaNs since they lack calibration parameters, and all data are augmented with cate-
gorical IDs that denote the source from which a datum is drawn. We use strategy 1 for choice of t in both examples in Sec. 3.3.

Fig. 9 Calibration with LMGP: (a) Underlying functions with true calibration parameters: yl1 (x) and yh(x) are coincident for
θ= θ∗. (b) Latent space for LMGPs All: Latent positions for yh(x) and yl1 (x) are coincident while the position for yl2 (x) is relatively
more distant (albeit still quite close). (c) Histogram of estimated calibration parameters: We estimate θ over 30 repetitions
where the LMGP fitted via all data yields more consistent estimates. All three models use a single categorical variable to
encode data sources. (d ) High-fidelity emulation performance: Using all data yields the best performance since data
sources are correlated. (e) and ( f ) Latent space for LMGPs l2 and LMGPs l1 : LMGP cannot detect model form error between
yh(x) and yl2 (x) since data are scarce and an appropriately estimated θ enables yl2 (x) to resemble yh(x) fairly well as shown in
(e). LMGP can correctly detect that yl1 (x) does not have model form error, as shown in ( f ). (g) yl2 (x) with estimated calibration
parameters versus yh(x): yl2 (x) can nearly interpolate sparse training data for yh(x) with the appropriate calibration parameter.
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that the latent positions corresponding to yh(x) and yl1 (x) are very
close to each other, indicating negligible model form error. In con-
trast, the positions corresponding to yh(x) and yl2 (x) are more distant
which signals that yl2 (x) has model form error.
The learned latent positions in Fig. 9(b) suggest that yl1 (x) (when

calibrated properly) captures the behavior of yh(x) better than yl2 (x).
Correspondingly, one may argue calibrating yl1 (x) individually may
improve performance. To assess this argument, we fit LMGPs to
three combinations of the available data sets and compare the per-
formance of these LMGPs in terms of estimating θ∗ and emulating
yh(x). In all three cases, we use a single categorical variable to
encode the data source, and hence, the subscript s is appended to
the model names (so, LMGPs l1 calibrates yl1 (x) via yh(x) and uses
a single categorical variable). The results are shown in Figs. 9(c)
and 9(d ) and indicate that using both low-fidelity data sets provides
the best performance since (1) θ̂s are estimated more consistently as
the distribution is centered at θ∗ with small variations, and (2) errors
(measured in terms of mean squared error, MSE) for predicting
yh(x) are smaller. These observations can be explained by the fact
that the highest relative distance between data sources in Fig. 9(b)
is on the order of 0.05, which indicates that LMGP finds yl2 (x) to
be very similar to yh(x) and yl1 (x) as this distance scales the correla-
tion function by exp{(− 0.05)2}≈ 0.998. That is, LMGP can distill
useful knowledge from the correlation between yl2 and other
sources to improve its performance in estimating θ and emulating
yh(x). When yl1 (x) is excluded from the calibration process and
only yl2 (x) is used in calibration, LMGP provides biased and less
consistent estimates for θ and relatively large MSEs for predicting
yh(x).
While the distance in the latent space typically encodes model

form error that is not reduceable by adjusting θ, LMGP may
mistake model form error for noise in the case that certain calibra-
tion parameters allow the low-fidelity model to closely match the
high-fidelity function. This is the case if we fit LMGP to only
yh(x) and yl2 (x). As shown in Fig. 9(e), LMGP places the latent posi-
tions for yh(x) and yl2 (x) very close to each other when yl1 (x) is
excluded. We explain this observation by referring back to
Fig. 9(c) where LMGPs l2 finds θ̂ ≈ 0.25. Plotting yl2 (x) for this
value of θ reveals that it can nearly interpolate the training data
(Fig. 9(g)). As such, LMGP mistakes 0.25 for the true value of θ
and dismisses the small resultant error as noise. This also explains
the aforementioned bias and inconsistency in estimating θ across
repetitions as the value that comes closest to interpolating yh(x) is
different depending on sampling variations. By contrast, LMGP
fit to all data is able to leverage the information from yl1 (x) to deter-
mine that yl2 (x) has model form error. And, as expected, no model
form error is indicated in the latent space if only yl1 (x) is used in cal-
ibration (Fig. 9( f )).

As this simple example clearly indicates, a simultaneous fusion
of multiple (i.e., more than 2) data sources can decrease identifiabil-
ity issues in calibration. This property is one of the main strengths of
our data fusion approach.

3.3.2 Calibration With Severe Model Form Error. In our
second analytical example, we examine a case where there is only
one low-fidelity source which has a significant model form error

yh(x) = sin (πx) + sin (10πx), 0 ≤ x ≤ 1 (18.1)

yl(x) = sin (θx), 0 ≤ x ≤ 1 and π − 2 ≤ θ ≤ 10π + 2 (18.2)

Based on Eq. (18), θ∗ can be either π or 10π so the range of θ in
yl(x) is chosen wide enough to include both values. As shown in
Fig. 10(a), considering θ∗=π implies that the high-fidelity source
is either noisy or has a high-frequency component that is missing
from the low-fidelity source (note that in realistic applications the
functional form of data sources is unknown so high-frequency
trends can be easily misclassified as noise in which case they are
typically smoothed out, i.e., not learned). Conversely, considering
θ∗=10π implies that yl(x) is expected to surrogate the high-
frequency component of yh(x) and that sin(πx) is the discrepancy.
Note that the analytic MSEs (calculated by comparing yh(x) and
yl(x) at 10,000 sample points equally spaced over the input range)
and cosine similarities (between yh(x) and yl(x), also at 10,000
sample points equally spaced over the input range) are identical
for each choice of θ, i.e., both choices yield a discrepancy of the
same magnitude, and we cannot determine which choice is better
a priori based on MSEs or cosine similarity. We are interested in
finding out which value is a better estimate for θ∗ and whether
LMGP is able to consistently infer this value purely from the
low- and high-fidelity data sets. We do not corrupt the data sets
with noise and investigate the effect of noise in Sec. 4.2.
We now explore the effects of the low-fidelity data set size on the

performance while holding the number of high-fidelity data cons-
tant. Specifically, we examine nl= 30, 100, 200 with nh= 15 in
each case. Note that standard GP trained on only the 15 available
high-fidelity samples cannot learn the high-frequency behavior of
yh(x) and instead interprets it as noise.
As shown in Fig. 10(b), increasing nl improves high-fidelity pre-

diction and we can therefore consider the estimates of θ and the
latent distances in the nl= 200 case to be the most accurate since
they maximize prediction performance. Shown in Fig. 11(a) are his-
tograms of the latent distances over 30 repetitions for each case.
When few low-fidelity data are available, the latent distances are
close to zero; with plentiful data, the latent distances are clustered
around 0.5. This indicates that LMGP interprets yh(x) and yl(x) as

Fig. 10 Calibration via LMGP: (a) Plot of the underlying functions: Due to model form error, yl-
(x) is unable to capture the behavior of yh(x) regardless of the choice of θ. Choosing θ = π indi-
cates a discrepancy of sin(10π), while choosing θ =10π indicates a discrepancy of sin(π).
Notably, the analytic MSEs (calculated by comparing yh(x) and yl(x) at 10,000 sample points
equally spaced over the input range) for both choices of theta are 0.5, i.e., the magnitude of
the error is the same for both choices of θ. (b) High-fidelity emulation performance: As we
provide more low-fidelity data, LMGP’s performance on high-fidelity emulation increases.
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being closely correlated when we have few low-fidelity data, but
consistently learns that yl(x) has a noticeable error with respect to
yh(x) as we provide more data. Without sufficient low-fidelity
data, LMGP learns the low-frequency behavior of yh(x) which
follows sin(πx) and dismisses the high-frequency behavior as
noise. Consequently, LMGP finds a small latent distance since
yl(x) can capture sin(πx) without error.
We now examine the histogram of θ̂ in Fig. 11(b). When few

low-fidelity data are available, estimates are clustered around both
π and 10π while with plentiful data the estimates are tightly clus-
tered around only 10π. This observation indicates that when little
data are available, LMGP interprets yh(x) to more closely resemble
sin(πx) almost half of the times which matches with the observation
on the learned latent distances; i.e., the high-frequency behavior is
interpreted as noise and not learned. As more low-fidelity data are
available, LMGP is able to learn the high-frequency behavior of
yh(x) using the low-fidelity data and interprets yh(x) as more
closely resembling sin(10πx).
Why does LMGP prefer θ̂ = 10π with more data? To answer this

question, we note that in LMGP shifting the levels of the categorical
variable is expected to reflect a change in data source. With θ̂ = π,
the shift in the categorical variable is supposed to “model”
sin(10πx), which is much more difficult than the alternative. In
other words, LMGP is trying to learn the simplest function that
must be represented by a shift in the categorical variable
(Fig. 12(a)). We further explore this conjecture by fitting an
LMGP to 100 noiseless samples from yh(x) and 200 samples from
yl(x). This amount of data is sufficient to learn both the high-
frequency behavior of yh(x) and the high-frequencies of yl(x) (i.e.,
the behavior of yl(x) for large θ), and as such, we expect the
latent positions and calibration estimates found by LMGP in this
case to be optimal. As shown in Fig. 12(b), LMGP finds latent

distances near 0.5 and θ = 10π very consistently; i.e., LMGP
prefers to estimate the calibration parameters to minimize the com-
plexity of the discrepancy function.

4 Results
To validate our approach in both multi-fidelity and calibration

problems, we test our method on analytical functions and assess its
performance against competing methods. In each example, we vary
the size of the training data and the added noise variance and repeat
the trainingprocess to account for randomness (20 times for themulti-
fidelity problems and 30 times for the calibration problems). The
knowledge of the value of the noise variance is not used in training.
To measure accuracy, we use 10, 000 noisy test samples to obtain
MSE (note that since the test data are noisy, the MSE obtained by
an emulator cannot be smaller than the noise variance).
In our LMGP implementation, we always use dz= 2 and select

−3≤ ai,j≤ 3 during optimization where ai,j are the elements of the
mapping matrix A. When using LMGP for calibration, the search
space for each element of θ̂ is restricted to [−2, 3] after scaling
the data to the range [0, 1] (i.e., we select a search space larger
than the sampling range for θ). We use the modular version of
KOH’s approach where we set a uniform prior for θ over the sam-
pling range defined in each problem statement. All optimizations
are done based on the L-BFGS method, which is a second-order
gradient-based optimization technique.

4.1 Multi-Fidelity Results. We consider two analytical prob-
lems with high-dimensional inputs. In the first multi-fidelity
problem, we consider a set of four functions that model the
weight of a light aircraft wing [45]

Fig. 12 Effect of categorical variable anddata set size: (a) Effect of shifting the level:With θ̂= π
the shift in the categorical variable is supposed to “model” sin(10πx), which is muchmore diffi-
cult than the alternative. (b) Effect of data set size: with nh=100 and nl=200 LMGPconsistently
estimatesθas10πso theshift in categorical variable learns thesimplestdiscrepancycandidate,
i.e., sin(πx).

Fig. 11 Analysis for sin wave example: (a) Histogram of latent distances: LMGP estimates dis-
tances near zero and 0.5 with a few and plentiful data points, respectively. There is a large var-
iance in the latent distances for nl=100, with a large spike at zero and a cluster near 0.5 which
correspond to LMGP’s estimates for nl=30 and nl=200 respectively. That is, as the size of the
data is increasing, LMGPs interpretation of model form error changes. (b) Histogram of θ̂: As
more low-fidelity data are provided, estimates become more closely clustered around 10π.
With few low-fidelity data, LMGP guesses θ = π almost half of the time but with nl=200
LMGP almost consistently guesses θ =10π which means that yl(x) has a high-frequency
behavior.
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xT = [Sω, Wfω, A, Λ, q, λ, tc, Nz, Wdg, Wp]

min (x) = [150, 220, 6, −10, 16, 0.5, 0.08, 2.5, 1700, 0.025]

max (x) = [200, 300, 10, 10, 45, 1, 0.18, 6, 2500, 0.08]

These functions are ten-dimensional and have varying degrees of
fidelity where, following the notation introduced in Sec. 3, yh(x) has
the highest fidelity. Note that in yl3 (x) we multiplyWp by zero which
is equivalent to reducing the dimensionality of the function by one.
As enumerated in Table 2, the above functions are listed in decreas-
ing order with respect to accuracy; that is, yl1 (x) and yl3 (x) are the
most and least accurate models, respectively. Table 2 is generated
by evaluating the four functions in Eq. (19) on the same 10, 000
inputs as described in Sec. 3.2 (no noise is added to the outputs).
This knowledge of relative accuracy of the data sources is not
used when fitting an LMGP.
We consider various amounts of available low-fidelity data, with

and without noise. We also compare the two different settings intro-
duced in Sec. 3.2 where subscripts s and m indicate whether a single
or multiple categorical variables are used to encode the data sources
in LMGP. We only take 15 samples for yh(x), which is a very small
number given the high dimensionality of the input space. Addition-
ally, we investigate the effect of fusing the four datasets jointly
against fusing the high-fidelity data with each of the low-fidelity
sources (in the former case the subscript All is appended to
LMGP while in the latter case l1, l2 or l3 is used in the subscript
depending on which source is used in addition to yh(x)).
The results are summarized in Fig. 13 and indicate that the differ-

ent versions of LMGPs consistently outperform traditional GPs
(only fitted to high-fidelity data) in all cases, even when only
using the least accurate data source to augment high-fidelity emula-
tion. This superior performance of LMGP is due to taking advan-
tage of the correlations between datasets that compensates, to
some extent, for the sparsity of the high-fidelity data. LMGP also
has the advantage in consistency where fewer outliers are observed
in MSE compared to GP. This consistency indicates that our mod-
eling assumptions (e.g., how to encode the data source) marginally
affect the performance in this example.
In cases without noise, i.e., Figs. 13(a) and 13(c), LMGPs fit to

the data from yl1 (x) and yh(x) perform on par with or better than
the LMGPs that are fit to all data and the small differences are
mostly due to sample-to-sample variations. However, in cases
with noise, i.e., Figs. 13(b) and 13(d ), using all the data sets
improves the performance of LMGP. We explain this observation

Table 2 Relative accuracy of functions for wing-weight problem

yl1 (x) yl2 (x) yl3 (x)

RRMSE 0.19912 1.1423 5.7484

Note: The functions are listed in decreasing order with respect to accuracy,
with yl3 (x) being especially inaccurate. 10000 points are used in calculating
RRMSE.

Fig. 13 High-fidelity emulation performance for wing weight example: Performance of the
LMGP strategies follows the same trend as data source accuracy for all cases, with LMGP
using only yl1 (x) arguably outperforming LMGP using all data sources. (a) nh=15,
nl1 = nl2 = nl3 = 50, σ2=0: LMGP using all data sources provides consistent estimates with
some outliers. (b) nh=15, nl1 = nl2 = nl3 = 50, σ2=25: LMGPs All performs noticeably better
than other LMGP strategies for this case. (c) nh=15, nl1 = nl2 = nl3 = 100, σ2=0: LMGP using
only yl1 (x) arguably outperforms LMGP using all data sources by a very slim margin. (d ) nh
=15, nl1 = nl2 = nl3 = 100, σ2=25: Both LMGP strategies that use all data sources outperform
those that only use yl1 (x) and yh(x) by a slim margin.
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as follows: In the noiseless cases, LMGP is able to quite accurately
learn the behavior of yh(x) using just yl1 (x) and using all four data
sets provides no additional advantage in learning yh(x) while (1)
requiring the estimation of additional hyperparameters (in the A
matrix) and (2) compromising the estimates of Ωx to handle the dis-
crepancies between the four sources. By contrast, in the cases with
noise, one source is insufficient for LMGP to reach the threshold in
emulation accuracy (which equals the noise variance) for yh(x).
Including additional data sources in these cases helps LMGP to dif-
ferentiate noise from model form error.
For the remainder of this example, we investigate the most chal-

lenging version which has the fewest available data and highest
level of noise. The latent space for this problem for LMGPs All,
shown in Fig. 14(a), is once again a powerful diagnostic tool.
While LMGP only has access to 15 noisy samples from the ten-
dimensional function yh(x), the relative distances between latent
positions match the relative accuracies of the data sources with
respect to yh(x). The distance between yh(x) and yl3 (x) is ≈0.4 yield-
ing an approximate correlation of exp{− (0.42)}≈ 0.85, which
means that LMGP still uses information from yl3 (x) in predicting
the response for yh(x) despite the former’s low accuracy with
respect to the latter.
We impose a number of constraints in order to obtain a unique

solution for the latent positions since our objective function in
Eq. (8) is invariant under translation and rotation. For a two-
dimensional latent space, we fix the first position to the origin,
the second position to the positive z1–axis, and the third position
to the z2 > 0 half-plane. As we mentioned before in Sec. 3.2, we
also assign the data sources to positions sequentially (i.e.,
[yh(x), yl1 (x), yl2 (x), yl3 (x), · · ·] � [1, 2, 3, 4, · · ·]) with
yh(x) at the origin for easier visualization of the relative correlations
yli (x). While assigning the data sources to latent positions affects the
learned latent positions, the relative distances between them remain
the same as shown in Fig. 14(b). Since we typically know the data
source with the highest fidelity, the learned latent space of LMGP
provides an extremely easy way to assess the fidelity of different
sources with respect to it.
Prediction performance on the low-fidelity sources for LMGPs

All, shown in Fig. 15, follows the same trend as data source accu-
racy; i.e., it is best for yl1 (x) and worst for yl3 (x). When fitting
LMGP to multiple data sources, we expect prediction accuracy to
be high on sources that are well correlated with others, i.e.,
whose latent positions are close together or form a cluster. Leverag-
ing information from a well-correlated source improves prediction
performance more than the alternative, so each source in the
cluster gains a boost in prediction performance from the information
of the other sources in that cluster. In this case, yh(x), yl1 (x), and
yl2 (x) form a cluster and as such we see that MSEs for yl1 (x) and
yl2 (x) are much lower than those for yl3 (x).

In our next example, we consider data drawn from an eight-
dimensional model of water flow through a borehole [46]:
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xT = [Tu, Hu, Hl, r, rw, Tl, L, Kw]

min (x) = [100, 990, 700, 100, 0.05, 10, 1000, 6000]

max (x) = [1000, 1110, 820, 10000, 0.15, 500, 2000, 12000]

The above equations indicate that all low-fidelity functions have
nonlinear model form discrepancy. To roughly quantify these

Fig. 14 Effect of constraints on the latent space: (a) Default constraints: The latent space for
one sample repetition of LMGP fit all available data for the wing-weight function with nh=15,
nl1 = nl2 = nl3 = 50, σ2=25. yh(x), yl1 (x), and yl2 (x) are positioned at, respectively, the origin,
positive z1-axis, and first or second quadrant. While the learned latent spaces are different
across the 30 repetitions, the relative latent distances are consistent both for different repeti-
tions and for different amounts of data/noise. We only show the latent space of a randomly
selected repetition. (b) Alternate constraints: The training procedure and data are exactly
the same as before except that the three constrains are now applied to yl3 (x), yl2 (x), and
yl1 (x). Note that the relative distances between data sources are the same between the two
plots.

Fig. 15 Low-fidelity prediction performance: prediction accu-
racy is much higher for yl1 (x) and yl2 (x) than for yl3 (x)
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discrepancies, we follow the same procedure as in the previous
example and calculate RRMSEs (Table 3). As it can be seen, the
accuracy of the models increases with i (unlike the previous
example—LMGP is robust with respect to this choice).
We consider various amounts of available low-fidelity data, with

and without noise. We also use a few combinations for training
LMGP based on the selected data sets or how data sources are
encoded. The results are summarized in Fig. 16 where, once
again, LMGP convincingly outperforms GP in high-fidelity emula-
tion, especially with noisy data (Figs. 16(b) and 16(d )). The overall
trends in performance between strategies for LMGP are consistent
across the various cases, with LMGP fit to only one low-fidelity
source performing worse than LMGP fit to all data sources and
with LMGPs All specifically performing the best. LMGPm All

yields inconsistent results with nl= 50 or nl= 100, especially in
the latter case where the box plots have stretched to include the out-
liers. This behavior is due to overfitting and the fact that there are
many latent positions that must be placed in the latent space via a
simple matrix-based map (256 positions and 32 elements in the A
matrix). Note that even with these inconsistencies, LMGPm All fre-
quently outperforms GP, LMGPs l1 , LMGPm l1 , LMGPs l2 , and
LMGPm l2 , which indicates that using more than two data sets in
fusion is indeed beneficial.
The learned latent space for LMGPs All which is the most chal-

lenging version of this problem (noisy samples, fewest available
data) is shown in Fig. 17(a) which clearly indicates that relative

distances among the positions match with the relative accuracy
between the low- and high-fidelity sources: The position for yl3 (x)
is very close to that for yh(x), so LMGP weighs data from yl3 (x)
heavily when emulating yh(x) and vice versa. The position for
yl2 (x) is also close to both yh(x) and yl3 (x), but it is relatively
more distant from yh(x) compared to yl3 (x).
Like in our first example, prediction performance on the low-

fidelity sources for LMGPs All, shown in Fig. 17(b), follows a
similar trend to data source accuracy; i.e., it is best for yl2 (x) and
yl3 (x) and worst for yl1 (x), which is the least accurate source. As
we mentioned before, we expect prediction accuracy to be high
on sources whose latent positions are close together or form a
cluster. In this case, yh(x), yl2 (x), and yl3 (x) form a cluster, and as
such, we see that MSEs for yl2 (x) and yl3 (x) are much lower than
those for yl1 (x).

4.2 Calibration Results. We compare our calibration
approach to that of KOH by considering four test cases with
varying degrees of complexity. Note that, while LMGP can simul-
taneously assimilate and calibrate any number of sources, KOH’s
approach only works with two data sets at a time and relies on
repeating the process as many times as there are low-fidelity
sources.
For our first calibration problem, we consider data drawn from

simple one-dimensional analytical functions

yh(x) =
1

0.1x3 + x2 + x + 10
, −2 ≤ x ≤ 3 (21.1)

yl1 (x)=
1

0.1x3 + θx2 +1.5x+10.5
, −2≤ x≤ 3 and −1≤ θ≤ 2

(21.2)

Table 3 Relative accuracy of functions for borehole problem

yl1 (x) yl2 (x) yl3 (x)

RRMSE 3.6671 1.3688 0.36232

Note: The functions are listed in increasing order with respect to accuracy,
with yl3 (x) being the most accurate by a significant margin.

Fig. 16 High-fidelity emulation performance for the borehole problem: (a) nh=15, nl1 = nl2 = nl3 = 50, σ2=0: LMGP strategies
that use all data sources perform better than those using only one data source, with LMGPs All performing the best. (b) nh=15,
nl1 = nl2 = nl3 = 50, σ2=6.25: LMGPs All performs noticeably better than other LMGP strategies for this case. (c) nh=15,
nl1 = nl2 = nl3 = 100, σ2=0: LMGPs All again performs noticeably better than other LMGP strategies for this case. LMGPm All dis-
plays inconsistency in its estimates. (d ) nh=15, nl1 = nl2 = nl3 = 100, σ2=6.25: LMGPs All again performs noticeably better than
other LMGP strategies for this case. LMGPm All again displays inconsistency in its estimates.
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yl2 (x)=
1

θx2 + x+ 10
, −2≤ x≤ 3 and −1≤ θ≤ 2 (21.3)

where we consider θ∗=1. Note that both low-fidelity sources have
model form error, with yl2 (x) being more accurate than yl1 (x) over
the input range when θ= θ∗ despite omitting the x3 term (Table 4).
We show high-fidelity emulation performance for this problem in

Fig. 18 where, similar to Sec. 4.1, LMGPs are trained under various
settings in terms of which data sources are selected and how they are
encoded. As it can be observed, LMGP performs on par with or
better than KOH’s approach in high-fidelity emulation accuracy
for all cases, and LMGPs All offers the most consistent performance
for most cases. LMGP also performs particularly well in the cases
with noise (Figs. 18(b) and 18(d )). Despite the inaccuracy of
yl2 (x), LMGP fit to all data sources offers the most accurate emula-
tion in all cases.

We next show calibration performance in Fig. 19 where
LMGPs All consistently outperforms KOH in both accuracy and con-
sistency, especially in the noiseless cases (Figs. 19(a) and 19(c)).
Notably, KOH’s approach fit with yl2 (x) yields biased estimates.
With noise and little data (Fig. 19(b)), neither LMGP nor KOH’s
approach are able to obtain a very consistent estimate for the cali-
bration parameter across the repetitions. When more low-fidelity
data are provided (Fig. 19(d )), LMGP is able to leverage the addi-
tional low-fidelity data to find a consistent estimate for θ while
KOH’s approach does not improve in consistency.
We show the latent space from fitting LMGP to the most chal-

lenging version of this problem, i.e., nh= 3, nl1 = nl2 = 15, σ2= 2
× 10−5. As demonstrated in Fig. 20(a), LMGP is able to accurately
infer the correlations with only three noisy high-fidelity samples as
the relative latent distances match the relative accuracies of the data
sources. Thus, we expect the low-fidelity performance to be better
for yl2 (x) than for yl1 (x) as the position for yl2 (x) is relatively
closer to yh(x), which means that LMGP leverages more informa-
tion from yh(x) in predicting yl2 (x) than in predicting yl1 (x). We
assess the veracity of our expectation by examining low-fidelity
prediction performance in Fig. 20(b), which indicates that predic-
tion performance is indeed better for yl2 (x) than for yl1 (x).

Table 4 Relative accuracy of functions for simple calibration
problem

yl1 (x) yl2 (x)

RRMSE 0.22241 0.1285

Note: We find the RRMSE in calibration problems using the same method as
before but with the calibration parameters fixed to their true values at all
input points. Both low-fidelity functions are relatively accurate, with yl2 (x)
more accurate than yl1 (x).

Fig. 17 Effects of correlations between data sources for bore-
hole example: (a) Latent space: The latent space for one
sample repetition of LMGP fit to all available data for the borehole
function with nh=15, nl1 = nl2 = nl3 = 50, σ2=6.25. While the indi-
vidual latent spaces are different for each repetition, the relative
latent distances are consistent both for different repetitions and
for different amounts of data/noise. (b) Low-fidelity MSEs: Low-
fidelity prediction accuracy is better for yl2 (x) and yl3 (x) than for
yl1 (x).

Fig. 18 High-fidelity emulation performance: (a) nh=3, nl1 = nl2 = nl3 = 15, σ2=0: LMGP strategies generally perform better
than KOH’s approach, with LMGPs All performing the best. Estimates for all strategies except LMGPs All are fairly inconsistent.
(b) nh=3, nl1 = nl2 = nl3 = 15, σ2=2 · 10−5: LMGPs All performs noticeably better than other LMGP strategies for this case (and
better than KOH’s approach). (c) nh=3, nl1 = nl2 = nl3 = 50, σ2=0: With the addition of more low-fidelity data, all approaches
perform better. LMGPs All performs best by a very slimmargin, and ismore consistent in its performance than comparable strat-
egies. (d ) nh=3, nl1 = nl2 = nl3 = 50, σ2=2 · 10−5: With noise, LMGPs l2 performs nearly on par with LMGPs All and producesmore
consistent performance.
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Next, we reconsider the example in Eq. (18) where θ∗=π and
θ∗=10π are the two valid choices for the true calibration parameter
as discussed in Sec. 3.3. We fit LMGP with two approaches to cat-
egorical variable selection and consider various amounts of avail-
able low-fidelity data all with noise (the noiseless case is
considered in Sec. 3.3).
The high-fidelity emulation performance is summarized in

Fig. 21, which indicates that LMGP outperforms KOH’s approach
by a similar margin for each case. Notably, LMGP’s performance is
robust to the choice of categorical variable assignment for this
problem as we see a similar variation in performance over repeti-
tions between LMGPs All and LMGPm All. We explain this by
noting that since there are only two data sources, LMGPm All

finds a total of 22= 4 latent positions with (2+ 2) × 2= 8 elements
in A which indicates that overfitting should not be a concern.

The estimates of the calibration parameters are provided in
Fig. 22 and indicate that the estimation consistency in both
approaches increases as nl is increased from 30 to 200. This
increase is more prominent for LMGP. However, while LMGP
converges on θ = 10π, KOH’s approach’s estimates are approxi-
mately evenly split between π and 10π. This behavior is because
the L2 distance of sin(10πx) and sin(πx) from yh(x) is the same,
and hence, KOH’s approach cannot favor one over the other
[21,47,48]. As explained in Sec. 3.3, in this case, LMGP con-
verges at θ = 10π as this choice provides not only a simpler dis-
crepancy but also enables learning the high-frequency nature of
yh(x).
Finally, we show histograms of latent distances learned by

LMGP in Fig. 23. The trends are quite similar to those seen in
Sec. 3.3, with the latent distances being close to 0 for low
amounts of low-fidelity data and converging on 0.5 as the amount
of data is increased. When high-fidelity data are insufficient to
learn the high-frequency behavior of yh(x), LMGP treats the high-
frequency behavior as noise and finds yh(x)≈ sin(πx). When
low-fidelity data are also insufficient, LMGP cannot learn the beha-
vior of yl(x) at high frequencies (i.e., for large θ). Thus, LMGP finds
θ = π, which implies yl(x)= sin(πx), i.e., no model form error and a
corresponding latent distance near zero. With sufficient low-fidelity
data, however, LMGP learns the behavior of yl(x) for large θ and
finds that θ = 10π yields a less complex discrepancy between
yh(x) and yl(x).
We now revisit the borehole problem from Sec. 4.1, this time

adapted as a calibration problem to explore the effects of both non-
linear model form error and high-dimensional inputs. We begin
with data drawn from the following functions:

yh(x) =
2πTu(Hu − Hl)
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Fig. 19 Calibration performance: (a) nh=3, nl1 = nl2 = nl3 = 15, σ2=0: LMGP offers consistent and unbiased esti-
mates. KOH’s approach suffers from bias and inconsistency. (b) nh=3, nl1 = nl2 = nl3 = 15, σ2=2 · 10−5: All
approaches yield inconsistent estimates. (c) nh=3, nl1 = nl2 = nl3 = 50, σ2=0: Both KOH’s approach and LMGP
yield consistent estimates, but KOH’s approach still suffers from bias. (d ) nh=3, nl1 = nl2 = nl3 = 50, σ2=2 ·
10−5: LMGP achieves higher consistency that KOH’s approach with the addition of more low-fidelity data.
LMGP’s estimate is unbiased, while KOH’s approach still yields biased estimates.

Fig. 20 Effects of correlations between data sources: (a) Latent
space: The latent space for one sample repetition of LMGP fit to
all available data with nh=3, nl1 = nl2 = nl3 = 15, σ2=2×10−5.
While the individual latent spaces are different for each repeti-
tion, the relative latent distances are consistent both for different
repetitions and for different amounts of data/noise. (b) Low-
fidelity MSEs: Low-fidelity prediction accuracy is better for
yl2 (x) than for yl1 (x).
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Fig. 21 High-fidelity emulation performance for sin wave example: (a) nh=30, nl=30, σ2= .09, (b) nh=30, nl=
60, σ2= .09, (c) nh=30, nl=100, σ2= .09, and (d ) nh=30, nl=200, σ2=0.09. LMGP outperforms KOH’s approach
by a similar margin in all cases.

Fig. 22 Calibration performance for sin wave problem: (a) nh=30, nl= 30, σ2= .09,
(b) nh =30, nl=60, σ2= .09, (c) nh=30, nl=100, σ2= .09, and (d ) nh=30, nl=200, σ2= .09

Fig. 23 Histogram of latent distances for sin wave problem: (a) nh=30, nl=30, σ2= .09,
(b) nh=30, nl=60, σ2= .09, (c) nh=30, nl=100, σ2= .09, (d ) nh=30, nl=200, σ2= .09
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xT = [Tu, Hu, Hl, r, rw, Kw], θT = [θ1, θ2]

min (x) = [100, 990, 700, 100, 0.05, 6000]

max (x) = [1000, 1110, 820, 10000, 0.15, 12000]

min (θT ) = [10, 1000], max (θT ) = [500, 2000]

where we consider θT
∗
=[250,1500]. Note that both low-fidelity

sources have model form error with yl1 (x) being more accurate
than yl2 (x) over the input range when the true calibration parameters
are used (Table 5) and that the input Tu has been omitted and
replaced by a constant in both low-fidelity functions.

We hold nh= 25 and nl= 100 constant and examine two
cases, one without noise and one with noise applied to samples
(σ2= 100 with Range(yh(x))≈ 974 over the input range) and
again fit LMGP with various strategies. In both cases, LMGP con-
vincingly outperforms KOH’s approach in high-fidelity emulation,
see Fig. 24. Notably, LMGP outperforms KOH’s approach given
equivalent access to data, e.g., LMGPs l1 versus KOHl1 . LMGP’s
performance is also robust to modeling choice, which we explain
by noting that with three data sources the tm strategy for categorical
variable selection yields 33= 27 latent positions and 2 × (3 × 3)= 18
elements of A, i.e., the number of latent positions is on the same
order of magnitude as the number of hyperparameters in A and
the size of the dataset is large relative to the number of
hyperparameters.
As shown in Fig. 25(a) for the noiseless case, the latent positions

found by LMGPs All show no model form error for yl1 (x) and little
model form error for yl2 (x), i.e., LMGP mistakes model form error
in yl1 (x) for noise since the error is so low. While these latent posi-
tions are not fully accurate as yl1 (x) does still have model form error,
the relative distances to the data sources do correctly indicate which
is more accurate. With noise, shown in Fig. 25(b), the relative dis-
tances to yh(x) are nearly the same for both low-fidelity sources,
although yl1 (x) is slightly closer to yh(x) than to yl2 (x), which indi-
cates that LMGP has more difficulty determining the magnitudes of
the errors in the low-fidelity data sources in this case. The magni-
tudes of the latent distances are quite small in both cases, which
reflect the fact that both low-fidelity data sources are relatively accu-
rate when calibrated appropriately.
Calibration performance, shown in Fig. 26, reveals inconsistent

performance in estimating θ1 but consistent estimates for θ2 for
both LMGP and KOH’s approach in all three cases. We explain
this by noting that the main sensitivity indices (calculated using
10, 000 inputs sampled via Sobol sequence) for θ1 and θ2 are on
the order of 10−4 and 10−1 respectively for the low-fidelity func-
tions; i.e., variation in θ1 has very little effect on their outputs.
Therefore, we expect θ1 to be very difficult to estimate. While

Table 5 Relative accuracy of functions for borehole calibration
problem

yl1 (x) yl2 (x)

RRMSE 0.049219 0.19838

Note: Both low-fidelity functions are relatively accurate, with yl2 (x) less
accurate than yl1 (x).

Fig. 24 High-fidelity emulation performance: (a) nh=25, nl1 = nl2 = nl3 = 100, σ2=0: LMGPm All
arguably performs better than LMGPs All. (b) nh=25, nl1 = nl2 = nl3 = 100, σ2=100: Results with
noise are quite similar to those without.

Fig. 25 Latent positions: (a) nh=25, nl1 = nl2 = nl3 = 100, σ2=0: LMGP finds no model form
error for yl2 (x) and instead mistakes it for noise. (b) nh=25, nl1 = nl2 = nl3 = 100, σ2=100:
LMGP correctly finds little error for both sources, but is unable to accurately determine the rel-
ative magnitudes of those errors.
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LMGP’s estimates for θ1 suffer from high variance, the distributions
are centered on the true parameter for both cases. By contrast,
KOH’s approach produces biased estimates in all cases, although
KOHl2 guesses nearly the correct parameter almost half the time
in the case with noise (Fig. 26(b)). Both methods estimate θ2
quite accurately and consistently. KOH’s approach has lower vari-
ance in its estimates but more outliers when using yl2 (x) compared
to LMGP’s estimates using all data sources.
Finally, we revisit the wing-weight problem from Sec. 4.1, now

adapted as a calibration problem with four calibration parameters.
We begin with data drawn from the following functions:

yh(x) = 0.036S0.758ω W0.0035
fω

A

cos2(Λ)

( )0.6

θ0.0061 θ0.042
100θ3
cos (Λ)

( )−0.3

(θ4Wdg)
0.49 + SωWp (23.1)

yl1 (x) = 0.036S0.758ω W0.0035
fω

A

cos2(Λ)

( )0.6

θ0.0061 θ0.042
100θ3
cos (Λ)

( )−0.3

(θ4Wdg)
0.49 + 1 ×Wp (23.2)

yl2 (x) = 0.036S0.8ω W0.0035
fω

A

cos2(Λ)

( )0.6

θ0.0061 θ0.042
100θ3
cos (Λ)

( )−0.3

(θ4Wdg)
0.49 + 1 ×Wp (23.3)

yl3 (x) = 0.036S0.9ω W0.0035
fω

A

cos2(Λ)

( )0.6

θ0.0061 θ0.042
100θ3
cos (Λ)

( )−0.3

(θ4Wdg)
0.49 + 0 ×Wp (23.4)

xT = [Sω, Wfω, A, Λ, Wdg, Wp], θT = [θ1, θ2, θ3, θ4]

min (x) = [150, 220, 6, − 10, 1700, 0.025]

max (x) = [200, 300, 10, 10, 2500, 0.08]

min (θT ) = [16, 0.5, 0.08, 2.5], max (θT ) = [45, 1, 0.18, 6]

where we consider θT
∗
=[40,0.8,0.17,3]. Note that all three low-

fidelity sources have model form error that increases with the data

Fig. 27 Analysis for the Wing-Weight Problem: (a) high-fidelity emulation performance: LMGP displays much
more consistency than KOH’s method. (b) latent space: The latent space accurately reflects the relative accura-
cies of the data sources.

Fig. 26 Calibration performance: (a) θ̂1 for nh=25, nl1 = nl2 = 100, σ2=0: KOH’s approach
produces biased estimates, while LMGP’s estimates are centered on the correct parameter
with high variance. (b) θ̂1 for nh=25, nl1 = nl2 = 100, σ2=100: KOH’s approach again produces
biased estimates, with the caveat that KOHl2 finds the correct parameter nearly half the time.
(c) θ̂2 for nh=25, nl1 = nl2 = 100, σ2=0: All methods find the correct parameter consistently.
KOHl1 finds the most accurate and consistent estimates, while KOHl2 has some outliers.
(d ) θ̂2 for nh=25, nl1 = nl2 = 100, σ2=100: Both of KOH’s approaches have outliers, but esti-
mate the correct parameter more consistently than LMGP.
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source index when the true calibration parameters are used
(Table 2).
We examine one case with very small noisy data sets in which we

set nh= 15, nl= 50, and σ2= 16. We fit only LMGPs All as it is gener-
ally the best-performing model. LMGP consistently outperforms
KOH’s method in high-fidelity emulation (Fig. 27(a)). Additionally,
the latent space learned by LMGP shows model form error for all
three low-fidelity sources, with the relative distances between the
sources roughly matching their relative accuracies (Fig. 27(b)). Both
KOH’s method and LMGP perform poorly in calibration for all four
parameters. We explain this by noting that this problem suffers from
identifiability issues and that the calibration parameters have both
small Sobol sensitivities and low interaction (i.e., even increasing
the number of data points will not resolve the issue). Notably, while
LMGP displays inconsistent calibration estimates for each parameter,
KOH’s method incorrectly shows consistent but biased estimates
which are often quite far from the true calibration parameter
(Fig. 28(c)). LMGP shows more uncertainty than KOH, which more
accurately reflects the nature of the problem and its learned latent
space can help the analyst in detecting identifiability issues.

5 Conclusion
In this paper, we present a novel latent-space-based approach for

data fusion (i.e., multi-fidelity modeling and calibration) via latent-
map Gaussian processes or LMGPs. Our approach offers unique
advantages that can benefit engineering design in a number of
ways such as improved accuracy and consistency compared to com-
peting methods for data fusion. Additionally, LMGP learns a latent
space where data sources are embedded with points whose distances
can shed light on not only the relations among data sources but also
potential model form discrepancies. These insights can guide diag-
nostics or determine which data sources cannot be trusted.
Implementation and use of our data fusion approach are quite

straightforward as it primarily relies on modifying the correlation
function of traditional GPs and assigning appropriate priors to the
datasets. LMGP-based data fusion is also quite flexible in terms
of the number of data sources. In particular, since we can assimilate
multiple data sets simultaneously, we improve prediction perfor-
mance and decrease non-identifiability issues that typically arise
in calibration problems.
Since LMGPs are extensions of GPs, they are not directly appli-

cable to extrapolation or big/high-dimensional data. However,
extensions of GPs that address these limitations [27,38,41–44,49]
can be incorporated into LMGPs. In our examples, we assumed

all data sources are noisy and hence used a single parameter to esti-
mate the noise. To consider different (unknown) noise levels, we
need to have a parameter for each data source. We also note that
the performance of LMGP in fusing small data can be greatly
improved by endowing its parameters with priors and using
Bayes’ rule for inference. In this case, the latent space will have a
probabilistic nature, the trained model will be more robust to over-
fitting, and prediction uncertainties will be more accurate. Lastly, we
have studied small data scenarios and not explored the effects of
large data sets on the consistency of hyperparameter estimation. A
detailed convergence study is needed to determine how the hyper-
parameters and the learned manifold are affected as the data set
sizes grow. These directions will be investigated in our future works.
Lastly, we note that the proposed method can be directly applied

to multi-response data sets with no modifications. To apply LMGP,
we would treat each response as if it was a data source and then
apply our data fusion method directly. However, with this strategy,
each “data source’ would have the exact same set of input points,
which will most likely cause numerical issues. While LMGP can
be applied to multi-response data sets with some modifications
(which may be presented in a future paper), the user should bear
in mind that we do not necessarily a priori expect any level of cor-
relation between the responses whereas with multi-fidelity problems
we expect (but do not necessarily have) some correlation as all
sources model the same system. Thus, we would recommend
fitting LMGP to all responses and examining the latent space to
see which responses are well-correlated. Then, fit individual emula-
tors to uncorrelated responses while fitting an LMGP to whichever
groups of responses that are correlated with each other.
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Fig. 28 Calibration Performance for the Wing-Weight Problem: We do not show the calibra-
tion results for KOHl3 as they are very poor due to the low accuracy of yl3 (x)
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Nomenclature
t = matrix or vector encoding of the categorical

combinations used in LMGP
A = matrix of hyperparameters of LMGP which

determine the latent positions of the categorical
combinations

R = correlation matrix for LMGP
nh, nli = respectively, the number of training data for the

high-fidelity source and ith low-fidelity source.
When all low-fidelity sources have the same
number of training data, we simply use nl

yh, yih, yh(x), yh = respectively, a vector containing training
outputs, the ith training output, the underlying
data source, and the output of the underlying
data source

Xh, xih, xh = respectively, the matrix of training inputs, the
ith training input, and the input to the data
source. In the case that the input is
one-dimensional, these become xh, xih, and xh,
respectively

Δzyh , yli
= distance between, e.g., yh(x) and yli (x) in the

latent space. In the case that there are only
two points in the latent space, we shorten this to
just Δz

θ, θ*, θ̂ = respectively, the calibration inputs, true
calibration parameters, and estimated
calibration parameters. In general, we use an
asterisk to denote the true value of a parameter
and a hat to denote an estimate

σ2 = noise variance
Ωx, Ωθ = matrix of roughness parameters ωi for the

numerical and calibration inputs, respectively

Subscripts
h = high-fidelity source
li = ith low-fidelity source. We use this and the

above subscript to denote data sources and their
corresponding latent points, e.g., yh(x) or yl1 (x).
We also use this subscript to refer to strategies
of KOH’s approach or LMGP which are fit to
only yh and yli

s, m = respectively, strategy 1 and strategy 2 for
categorical variable assignment during
preprocessing of data for LMGP. We combine
this with the above subscripts to fully describe a
fitting strategy, e.g., LMGPs l1 denotes LMGP
fit to only yh and yl1 using strategy 1 for
preprocessing the data

All = a strategy of LMGP fit to data from all available
sources
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