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ABSTRACT 
Our main contribution is to introduce a novel method for 

Gaussian process (GP) modeling of massive datasets. The key 

idea is to build an ensemble of independent GPs that use the 

same hyperparameters but distribute the entire training dataset 

among themselves. This is motivated by our observation that 

estimates of the GP hyperparameters change negligibly as the 

size of the training data exceeds a certain level, which can be 

found in a systematic way. For inference, the predictions from all 

GPs in the ensemble are pooled to efficiently exploit the entire 

training dataset for prediction. We name our modeling approach 

globally approximate Gaussian process (GAGP), which, unlike 

most largescale supervised learners such as neural networks and 

trees, is easy to fit and can interpret the model behavior. These 

features make it particularly useful in engineering design with 

big data. We use analytical examples to demonstrate that GAGP 

achieves very high predictive power that matches or exceeds that 

of state-of-the-art machine learning methods. We illustrate the 

application of GAGP in engineering design with a problem on 

data-driven metamaterials design where it is used to link 

reduced-dimension geometrical descriptors of unit cells and 

their properties. Searching for new unit cell designs with desired 

properties is then accomplished by employing GAGP in inverse 

optimization. 
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NOMENCLATURE 
𝑛 Number of training samples 

GP Gaussian process 

𝑑 Input dimensionality 

𝒙 Vector of 𝑑 inputs 

𝑞 Output dimensionality 

𝒚 Vector of 𝑞 outputs 

𝑹 Sample correlation matrix of size 𝑛 × 𝑛 

𝝎 Roughness parameters of the correlation function 

MLE Maximum likelihood estimation 

𝐿 Objective function in MLE 

𝛿 Nugget or jitter parameter 

𝑛0 Number of initial random samples 

𝑛𝑠 Number of random samples added to 𝑛0 per iteration

𝑠 Number of times that 𝑛𝑠 samples are added to 𝑛0
𝝎̂∞ Estimate of 𝝎 via MLE with very large training data 

1 INTRODUCTION 
Fueled by recent advancements in high performance 

computing as well as data acquisition and storage capabilities 

(e.g., online repositories), data-driven methods are increasingly 

employed in engineering design [1-3] to efficiently explore the 

design space of complex systems by obviating the need for 

expensive experiments or simulations. For emerging material 

systems, in particular, large datasets have been successfully 

leveraged to design heterogeneous materials [4-8] and 

mechanical metamaterials [9-12].  
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Key to data-driven design is to develop supervised learners 

that can distill as much useful information from massive datasets 

as possible. However, most large-scale learners such as deep 

neural networks [13] (NNs) and gradient boosted trees [14] 

(GBT) are difficult to interpret and hence less suitable for 

engineering design. Gaussian process (GP) models (aka Kriging) 

have many attractive features that underpin their widespread use 

in engineering design. For example, GPs interpolate the data, 

have a natural and intuitive mechanism to smooth the data to 

address noise (i.e., avoid interpolation) [15], and are very 

interpretable (i.e., provide insight into input-output relations) 

[16, 17]. In addition, they quantify prediction uncertainty and 

have analytical conditional distributions that enable, e.g., 

tractable adaptive sampling or Bayesian analysis [18]. However, 

conventional GPs are not readily applicable to large datasets and 

have been mostly confined to engineering design with small 

data. The goal of our work is to bridge the gap between big data 

and GPs while achieving high predictive accuracy. 

The difficulty in fitting GPs to big data is rooted in the 

repetitive inversion of the sample correlation matrix, 𝑹, whose 

size equals the number of training samples, 𝑛 . Given the 

practical features and popularity of GPs, considerable effort has 

been devoted to resolving their scalability shortcoming. One 

avenue of research has explored partitioning the input space (and 

hence the training data) via, e.g., trees [19] or Voronoi cells [20], 

and fitting an independent GP to each partition. While 

particularly useful for small to relatively large datasets that 

exhibit nonstationary behavior, prediction via these methods 

results in discontinuity (at the partitions’ boundaries) and 

information loss (because the query point is associated with only 

one partition). Projected process approximation (PPA) [21] is 

another method where the information from 𝑛  samples is 

distilled into 𝑚 ≪ 𝑛  randomly (or sequentially) selected 

samples through conditional distributions. PPA is very sensitive 

to the 𝑚 selected samples and overestimates the variance [21]. 

In Bayesian committee machine (BCM) [22], the dataset is 

partitioned into 𝑝  mutually exclusive and collectively 

exhaustive parts with independent GP priors, and then the 

predictions from all the GPs are pooled together in a Bayesian 

setting. While theoretically very attractive, BCM does not scale 

well with the dataset size and is computationally very expensive. 

Another avenue of research has pursued subset selection. 

For example, a simple strategy is to only use 𝑚 ≪ 𝑛 samples to 

train a GP [23, 24] where the 𝑚  samples are selected either 

randomly or sequentially based on maximizing some criteria 

such as information gain or differential entropy score. Reduced-

rank approximation of 𝑹  with 𝑚 ≪ 𝑛  samples is another 

option for subset selection and has been used in the Nystrom [25] 

and subset of regressors [26, 27] (SR) methods. The 𝑚 samples 

in these methods are chosen randomly or in a greedy fashion to 

minimize some cost function. While the many variants of subset 

selection may be useful in some applications, they waste 

information and are not applicable to very large datasets due to 

the computational and storage costs. Local methods also use 

subsets of the data because they fit a stationary GP (for each 

prediction) to a very small number of training data points that are 

closest to the query point. Locally approximate Gaussian process 

[28] (LAGP) is perhaps the most widely recognized local method 

where the subsets are selected either based on their proximity to 

the query point or to minimize the predictive variance. Despite 

being useful for nonstationary and relatively large datasets, local 

methods also waste some information and can be prohibitively 

expensive for repetitive use since local samples have to be found 

and a GP must be fitted for each prediction. 

Although the recent works have made significant progress 

in bridging the gap between GPs and big data, GPs still struggle 

to achieve the accuracy of the state-of-the-art large-scale 

supervised learners such as NNs and trees. Motivated by this 

limitation, we develop a computationally stable and inexpensive 

approach for GP modeling of massive datasets. The main idea of 

our approach is to build an ensemble of independent GPs that 

utilize converged roughness parameters as their hypermeters. 

This is based on an empirical observation that the estimates of 

the GP hyperparameters negligibly change as the size of the 

training data exceeds certain level. While having some common 

aspects with a few of the abovementioned works, our method is 

more massively scalable, can leverage multicore or GPU 

(graphical processing unit) computations [29, 30], and is 

applicable to very high-dimensional data with or without noise. 

As mentioned earlier, big data has enticed new design 

methods for complex systems such as metamaterials [9-12], 

which possess superior properties through their hierarchical 

structure that consists of repeated unit cells. While traditional 

methods like topology optimization (TO) provide a systematic 

computational platform to discover metamaterials with 

unprecedented properties, they have many challenges that are 

primarily due to the high dimensional design space (i.e., the 

geometry of unit cells), computational costs, local optimality, 

and spatial discontinuities across unit cell boundaries (in case 

multiple unit cells are simultaneously designed). We take a data-

driven approach to address these challenges by first building a 

large training database of many unit cells and their 

corresponding properties. Unlike previous data-driven works 

that represent unit cells as signed distance fields [9] or voxels 

[11], we drastically reduce the input dimension in our dataset by 

characterizing the unit cells via spectral shape descriptors based 

on the Laplace-Beltrami (LB) operator. Then, we employ our GP 

modeling approach to link the geometrical descriptors of unit 

cells and their properties and, in turn, efficiently discover new 

unit cells with desired properties. 

The rest of the paper is organized as follows. We first review 

some preliminaries on GP modeling in Sec. 2 and then introduce 

our novel idea in Sec. 3. In Sec. 4, we validate the accuracy of 

our approach by comparing its performance against three 

popular and largescale supervised learning methods on four 

analytical problems. We demonstrate an application of the GP 

approach to our data-driven design method for metamaterials in 

Sec. 5 and conclude the paper in Sec. 6. 

2 REVIEW ON GAUSSIAN PROCESS MODELING 
Below, we describe how GP emulators (aka surrogates, 

metamodels, or models) can replace a computer simulator. The 
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procedure is identical if the data is obtained from physical 

experiments. Let us denote the output and inputs of a computer 

simulator by, respectively, 𝑦  and the 𝑑  dimensional vector 

𝒙 = [𝑥(1), 𝑥(2), … , 𝑥(𝑑)]
𝑇
  where 𝒙 ∈ ℝ𝑑 . Assume the input-

output relation is a realization of the random process 𝜂(𝒙): 
 

𝜂(𝒙) = ∑ 𝛽(𝑖)𝑓𝑖(𝒙)
ℎ
𝑖=1 + 𝜉(𝒙), (1)  

 

where 𝑓𝑖(𝒙)’s are some pre-determined set of basis functions, 

𝜷 = [𝛽(1), … . , 𝛽(ℎ)]
𝑇
  are unknown weights, and 𝜉(𝒙)  is a 

zero-mean GP characterized with its parametric covariance 

function, 𝑐(∙,∙): 
 

𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝜎2𝑟(𝒙, 𝒙′), (2)  

 

where  𝑟(⋅)  is the correlation function having the property 

𝑟(𝒙, 𝒙) = 1 and 𝜎2 is the process variance. Various correlation 

functions have been developed in the literature with the Gaussian 

correlation function being the most widely used one: 

 

𝑟(𝒙, 𝒙′) =  exp{−(𝒙 − 𝒙′)𝑇𝛀(𝒙 − 𝒙′)} , (3)  

 

where 𝛀 = 𝑑𝑖𝑎𝑔(𝟏𝟎𝝎)  and 𝝎 = [𝜔(1), 𝜔(2), … , 𝜔(𝑑)]
𝑇
,

−∞ < 𝜔𝑖 < ∞  are the roughness or scale parameters. The 

collection of 𝜎2 and 𝝎 are called the hyperparameters.  

With the formulation in Eq. (1) and given the 𝑛  training 

pairs of (𝒙𝑖 , 𝑦𝑖), GP modeling requires finding a point estimate 

for 𝜷 , 𝝎 , and 𝜎2  via either maximum likelihood estimation 

(MLE) or cross-validation (CV). Alternatively, Bayes’ rule can 

be employed to find the posterior distributions if there is prior 

knowledge on these parameters. Herein, we use a constant 

process mean (i.e., ∑ 𝛽𝑖𝑓𝑖(𝒙)
ℎ
𝑖=1 = 𝛽) and employ MLE. These 

choices are widely practiced because a high predictive power is 

provided while minimizing the computational costs [28, 31-35]. 

MLE requires maximizing the multivariate Gaussian 

likelihood function, or equivalently: 

 

[𝛽̂, 𝜎̂2, 𝝎̂] =
argmin 

𝛽, 𝜎2, 𝝎 
(
𝑛

2
𝑙𝑜𝑔(𝜎2) +

1

2
log(|𝑹|)

+
1

2𝜎2
(𝒚 − 𝟏𝛽)𝑇𝑹−1(𝒚 − 𝟏𝛽)),      (4) 

 

where log(∙) is the natural logarithm, 𝟏 is an 𝑛 × 1 vector of 

ones, and 𝑹  is the 𝑛 × 𝑛  correlation matrix with (𝑖, 𝑗)𝑡ℎ 

element 𝑅𝑖𝑗 = 𝑟(𝒙𝑖 , 𝒙𝑗)  for 𝑖, 𝑗 = 1,… , 𝑛 . Setting the partial 

derivatives with respect to 𝛽 and 𝜎2 to zero yields: 

 

𝛽̂ = [𝟏𝑇𝑹−1𝟏]−1𝟏𝑇𝑹−1𝒚, (5)  

𝜎̂2 =
1

𝑛
(𝒚 − 𝟏𝛽̂)

𝑇
𝑹−1(𝒚 − 𝟏𝛽̂). (6)  

 

Plugging these values into Eq. (4) and eliminating the constants: 

 

𝝎̂ =
argmin 
𝝎 

𝑛𝑙𝑜𝑔(𝜎̂2) + log(|𝑹|) =
argmin 
𝝎 

𝐿. (7)  

 

By numerically minimizing 𝐿  in Eq. (7) one can find  𝝎̂ .  

Many global optimization methods such as genetic algorithms 

[36], pattern searches [37, 38], and particle swarm optimization 

[39] have been employed to solve for 𝝎̂ in Eq. (7). However, 

gradient-based optimization techniques are commonly preferred 

due to their ease of implementation and superior computational 

efficiency [15, 16, 31]. To guarantee global optimality in this 

case, the optimization is done numerous times with different 

initial guesses. 

Upon completion of MLE, the following closed-form 

formula can be used to predict the response at any 𝒙∗: 
 

𝑦̂(𝒙∗) = 𝛽̂ + 𝒈𝑇(𝒙∗)𝑽−1(𝒚 − 𝟏𝛽̂), (8)  

 

where 𝒈(𝒙∗)  is an 𝑛 × 1  vector with 𝑖𝑡ℎ  element 

𝑐(𝒙𝑖 , 𝒙
∗) = 𝜎̂2𝑟(𝒙𝑖 , 𝒙

∗) , 𝑽  is the covariance matrix with 

(𝑖, 𝑗)𝑡ℎ  element 𝜎̂2𝑟(𝒙𝑖 , 𝒙𝑗) , and 𝒚 = [𝑦1, … , 𝑦𝑛]
𝑇  are the 

responses in the training dataset. The posterior covariance 

between the responses at the two inputs 𝒙∗ and 𝒙′ reads: 

 
𝑐𝑜𝑣(𝑦∗, 𝑦′) =

𝑐(𝒙∗, 𝒙′) − 𝒈𝑇(𝒙∗)𝑽−1𝒈(𝒙′) + 𝒉𝑇(𝟏𝑇𝑽−1𝟏)−1𝒉, (9)
  

 

where 𝒉 = (𝟏 − 𝟏𝑻𝑽−1𝒈(𝒙′)).  

 

If the training dataset has multiple outputs, one may fit either 

a single-response GP emulator to each response or a multi-

response GP (hereafter denoted by MRGP) to all the responses. 

We follow [40] and extend the above formulations to simulators 

with 𝑞 responses by placing a constant mean for each response 

(i.e., 𝜷 = [𝛽(1), … . , 𝛽(𝑞)]
𝑇
 ) and employing the separable 

covariance function: 

 

𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝚺⊗ 𝑟(𝒙, 𝒙′), (10)  

 

where ⊗  denotes the Kronecker product and 𝚺  is the 𝑞 × 𝑞 

process covariance matrix with its off-diagonal elements 

representing the covariance between the corresponding 

responses at any fixed 𝒙. The MLE approach described above 

can also be applied to multi-response datasets in which case 𝜎 

will be replaced with 𝚺 (see [41-44] for the details). 

Finally, we note that GPs can address noise and smooth the 

data (i.e., avoid interpolation) via the so-called nugget or jitter 

parameter, 𝛿 , in which case 𝑹  is replaced with 𝑹𝛿 = 𝑹 +
𝛿𝑰𝑛×𝑛. If 𝛿 is used, the estimated (stationary) noise variance in 

the data would be 𝛿𝜎̂2 . We have recently developed an 

automatic method to robustly detect and estimate noise [31]. 

3 GLOBALLY APPROXIMATE GAUSSIAN PROCESS 
Regardless of the optimization method used to solve for 𝝎̂, 

each evaluation of 𝐿  in Eq. (7) requires inverting the 𝑛 × 𝑛 
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matrix 𝑹 . For very large 𝑛 , there are two main challenges 

associated with this inversion: computational cost of 

approximately 𝑂(𝛼𝑛3)  and singularity of 𝑹  (since the 

samples get closer as 𝑛 increases). To address these issues and 

enable GP modeling of big data, our essential idea is to build an 

ensemble of independent GPs that use the same 𝝎̂ and share the 

training data among themselves. To illustrate, we take the 

following function over −2 ≤ 𝑥 ≤ 3: 

 

𝑦 = 𝑥4 − 𝑥3 − 7𝑥2 + 3𝑥 + 5 sin(5𝑥) . (11) 
 

The associated likelihood profile (i.e., 𝐿) is visualized in Figure 

1 as a function of 𝜔 for various values of 𝑛. Two interesting 

phenomena are observed in this figure: (𝑖) With large 𝑛, the 

profile of 𝐿 does not alter as the training samples change. To 

observe this, for each 𝑛, we generate five independent training 

samples via Sobol sequence [45, 46] and plot the corresponding 

𝐿. As illustrated in Figure 1, even though a total of 20 curves are 

plotted, only four are visible since the curves with the same 𝑛 

are indistinguishable. (𝑖𝑖) As 𝑛 increases, 𝐿 is minimized at 

similar 𝜔’s.  

 

 
Figure 1 The profile of 

𝐿

𝑛
 as a function of 𝜔 for various values of 𝑛. 

For each 𝑛, five curves are plotted but only four are visible since the 

curves with the same 𝑛 are indistinguishable.  

While we visualize the above two points with a simple 1D 

function, our studies indicate that they hold in general (i.e., 

irrespective of problem dimensionality and the absence or 

presence of noise) as long as the number of training samples is 

large. Therefore, we propose the following approach for GP 

modeling of large datasets.  

Assuming a very large training dataset of size 𝑛  is 

available, we first randomly select a relatively small subset of 

size 𝑛0  (e.g., 𝑛0 = 500 ) and estimate 𝝎̂0  with a gradient-

based optimization technique. Then, we add 𝑛𝑠  random 

samples (e.g., 𝑛𝑠 = 250  or 𝑛𝑠 = 500 ) to this subset and 

estimate 𝝎̂1  while employing 𝝎̂0  as the initial guess in the 

optimization. This process is stopped after 𝑠  steps when 𝝎̂ 

does not change noticeably (i.e., 𝝎̂𝑠 ≅ 𝝎̂𝑠−1) as more training 

data are used. At this point, the latest solution, denoted by 𝝎̂∞, 

is employed to build 𝑚  GP models each with 𝑛𝑘 ≥ 𝑛0 +
𝑠 × 𝑛𝑠 randomly chosen samples (from the entire training data) 

where 𝑛 = ∑ 𝑛𝑘
𝑚
𝑘=1 . Here, we have assumed that the collection 

of these GPs (who have 𝝎̂∞  as their hyperparameters) 

approximate a GP that is fitted to the entire training dataset and, 

correspondingly, call it globally approximate Gaussian process 

(GAGP). The algorithm of GAGP is summarized in Figure 2.  

We point out the following important features regarding 

GAGP. First, we recommend using gradient-based optimizations 

throughout the entire process because (𝑖) if 𝑛0 is large enough 

(e.g., 𝑛0 > 500 ), one would need to select only a few initial 

guesses to find the global minimizer of Eq. (7), i.e., 𝝎̂0   and 

(𝑖𝑖)  we want to use 𝝎̂𝑖−1  as the initial guess for the 

optimization in the 𝑖𝑡ℎ  step. This latter choice ensures fast 

convergence since the minimizer of 𝐿 changes slightly as the 

dataset size increases (see Figure 1). To estimate 𝝎̂0 , we 

recommend the method developed in [31]. Second, for 

predicting the response, Eq. (8) is used for each of the 𝑚 GP 

models and then the results are averaged. In our experience, we 

have observed very similar prediction results with different 

averaging schemes (e.g., weighted averaging where the weights 

are proportional to inverse variance). The advantages of 

employing an ensemble of models (in our case the 𝑚 GPs) in 

prediction is extensively demonstrated in the literature [14, 22]. 

Third, the predictive power is not sensitive to 𝑛0, 𝑠, and 𝑛𝑠 so 

long as large enough values are used for them. For novice users, 

we recommend starting with 𝑛0 = 500, 𝑠 = 6, 𝑛𝑠 = 250, and 

equally distributing the samples among the 𝑚  GPs (we use 

these parameters in Sec. 5 and for all the examples in Sec. 4). For 

more experienced users, we provide a systematic way in Sec. 4 

to choose these values based on GP’s inherent ability to estimate 

noise by the nugget variance. Lastly, it is pointed out that while 

GAGP has a high predictive power and is applicable to very large 

datasets, its implementation is very straightforward because it 

only entails integrating a GP modeling package such as GPM 

[31] with the algorithm in Figure 2. 

 

 
Figure 2 Flowchart of globally approximate Gaussian process, GAGP. 

It is assumed that a very large training dataset of size 𝑛 is available. 

4 COMPARATIVE STUDIES ON ANALYTICAL 
EXAMPLES 
To validate the performance of GAGP in regression, we 

compare its predictive power on four examples (Ex1-4) against 

recognized big data learners: locally approximate Gaussian 

process (LAGP) [28], gradient boosted trees (XGB) [14], and 

feed-forward neural networks (NNs) [47]. As shown in Eqs. 
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(12)-(15), the examples cover a wide range of dimensionality 

and input-output complexity. 

Ex1:  

𝑦 = 𝑥4 − 𝑥3 − 7𝑥2 + 3𝑥 + 5 sin(5𝑥),           (12) 
−2 ≤ 𝑥 ≤ 3, 

 

Ex2 [48]:  

𝑦 =
(1−exp(−

1

2𝑥2
))(𝑥3𝑥1

3+1900𝑥1
2+2092𝑥1+60)

𝑥4𝑥1
3+500𝑥1

2+4𝑥1+20
,             (13)  

min(𝒙) = [0,  0,  2200,  85]  

max(𝒙) = [1,  1,  2400,  110],  

 

Ex3 [49]:  

𝑦 = 2𝜋
√

𝑥1

𝑥4+
4𝑥3𝑥4𝑥5𝑥6

(𝑥5𝑥2+19.62𝑥1−
𝑥4𝑥3
𝑥2

)
2
+4𝑥4𝑥5(

𝑥6
𝑥7
)𝑥7

,             (14)
  

  

min(𝒙) = [30,  0.005,  0.002,  1000, 9 × 104, 290, 340],  

max(𝒙) = [60,  0.02,  0.01,  5000, 11 × 104, 296, 360],  

 

Ex4 [49]:  

𝑦 =
5𝑥12
1 + 𝑥1

+ 5(𝑥4 − 𝑥20)
2 + 𝑥5 + 40𝑥19

3 − 5𝑥1 + 0.05𝑥2

+ 0.08𝑥3 − 0.03𝑥6 + 0.03𝑥7 − 0.09𝑥9
− 0.01𝑥10 − 0.07𝑥11 + 0.25𝑥13

2 − 0.04𝑥14
+ 0.06𝑥15 − 0.01𝑥17 − 0.03𝑥18,              (15) 

−0.5 ≤ 𝑥𝑖 ≤ 0.5 for 𝑖 = 1,… 20. 

 

For each example, two independent and unique datasets of 

size 30000 are generated with Sobol sequence [46] where the 

first one is used for training while the second one for validation. 

In each example, Gaussian noise is added to both the training and 

validation outputs. We consider two noise levels to test the 

sensitivity of the results where the noise standard deviation (SD) 

is determined based on each example’s output range. As we 

measure performance by root mean squared error (RMSE), the 

noise SD should be recovered on the validation dataset (i.e., the 

RMSE would ideally equal noise SD). 

We use CV to ensure the best performance is achieved for 

LAGP, XGB, and NN. For GAGP, we use 𝑛0 = 500 , 𝑠 = 6 , 

𝑛𝑠 = 250, and equally distribute the samples among the 𝑚 =
30000

500+6×250
= 15  GPs (i.e., each GP has 2000  samples). The 

results are summarized in Table 1 (for small noise SD) and Table 

2 (for large noise SD), and indicate that (𝑖) GAGP consistently 

outperforms LAGP and XGB, (𝑖𝑖) GAGP and NN both recover 

the true amount of added noise in the data, and (𝑖𝑖𝑖)  GAGP 

achieves very similar results to NN. We note that given the large 

number of data points, the effect of sample-to-sample 

randomness on the results is very small and hence not reported. 

We highlight that the performance of GAGP in each case 

could have been improved even further by tuning its parameters 

via CV (which was done for LAGP, XGB, and NN). Potential 

parameters include 𝑛0, 𝑠, 𝑛𝑠 , and 𝑓𝑖(𝒙)  (see Eq. (1)). 

However, we intentionally avoid this tuning to demonstrate 

GAGP’s flexibility, generality, and ease-of-use.  

Table 1 Root mean squared error (RMSE) with small noise. Smallest 

errors are in bold. 

 Noise 

SD 
LAGP XGB NN GAGP 

Ex1 (1D) 0.2 1.271 0.209 0.200 0.200 

Ex2 (4D) 0.1 1.386 0.121 0.100 0.103 

Ex3 (7D) 0.1 0.129 0.118 0.100 0.100 

Ex4 (20D) 0.1 1.450 0.351 0.101 0.103 
 

Table 2 Root mean squared error (RMSE) with large noise. Smallest 

errors are in bold. 

 Noise 

SD 
LAGP XGB NN GAGP 

Ex1 (1D) 2 2.270 2.062 2.000 2.000 

Ex2 (4D) 1 1.739 1.123 1.002 1.009 

Ex3 (7D) 1 1.037 1.098 1.002 1.002 

Ex4 (20D) 1 1.911 1.155 1.011 1.001 

 

In engineering design, it is highly desirable to employ 

interpretable methods and tools that facilitate the knowledge 

discovery and decision-making process. Contrary to many 

supervised learning techniques such as NNs and random forests 

that are black boxes, the structure of GPs can provide qualitative 

insights. To demonstrate, we rewrite Eq. (3) as 𝑟(𝒙, 𝒙′) =

 exp {−∑ 10𝜔𝑖(𝑥(𝑖) − 𝑥′(𝑖))
2𝑑

𝑖=1 } . If 𝜔𝑖 ≪ 0  (e.g., 𝜔𝑖 =

−10), then variations along the 𝑖𝑡ℎ dimension (i.e., 𝑥(𝑖)) do not 

contribute to the summation and, subsequently, to the correlation 

between 𝒙  and 𝒙′ . This contribution increases as the 

magnitude of 𝜔𝑖 increases. In a GP with constant mean of 𝛽, 

all the effect of inputs on the output is captured through 𝑟(𝒙, 𝒙′). 
Hence, as 𝜔𝑖  decreases, the effect of 𝑥𝑖  on the output 

decreases as well. We illustrate this feature with a 2D example 

as follows. Assume 𝑦 = 𝑓(𝑥1, 𝑥2; 𝛼) = sin(2𝑥1𝑥2) +
𝛼 cos(𝛼𝑥1

2) , −𝜋 ≤ 𝑥1, 𝑥2 ≤ 𝜋  for 𝛼 = 2, 4, 6 . Three points 

regarding 𝑓 are highlighted: 

1. 𝑥1 is more important than 𝑥2 since 𝛼 cos(𝛼𝑥1
2) only 

depends on 𝑥1  (note that 𝛼 ≠ 0 ) while both inputs 

affect sin(2𝑥1𝑥2). 
2. As 𝛼  increases, the relative importance of 𝑥1 

(compared to 𝑥2 ) increases because the amplitude of 

𝛼 cos(𝛼𝑥1
2) increases. 

3. As 𝛼  increases, 𝑦  depends on 𝑥1  with growing 

nonlinearity because the frequency of 𝛼 cos(𝛼𝑥1
2) 

increases. 

Note that the first two points can be verified by calculating 

Sobol’s total sensitivity indices (SIs) for 𝑥1 and 𝑥2 in 𝑓, see 

Table 3. These indices are in [0, 1]  range with higher values 

indicating more sensitivity to the input. Here, SI of 𝑥1 is always 

1 but SI of 𝑥2 decreases as 𝛼 increases. This trend indicates 

that the relative importance of 𝑥1  on 𝑦  increases as 𝛼 

increases. 

We now demonstrate that a GP can distill the above features 

from a training dataset. To this end, for each 𝛼, we fit two GPs  
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one with 𝑛 = 1000 training data and the other with 𝑛 = 2000. 

The hyperparameter estimates are summarized in Table 3 and 

indicate that: 

• For each 𝛼, 𝜔̂1 is larger than 𝜔̂2 which implies that 

𝑥1 is more important than 𝑥2. 
• As 𝛼  increases, 𝜔̂1  increases while 𝜔̂2  only 

changes insignificantly. This shows that, as 𝛼 

increases, 𝑥1  becomes more important (since 𝜔̂1 
increases), and that the underlying functional relation 

between 𝑥2 and 𝑦 does not depend on 𝛼 (since 𝜔̂2 
does not change).  

• For a given 𝛼, the estimates change negligibly when 𝑛 

is increased. 

 
Table 3 Effect of sample size and nonlinearity on hyperparameter 

estimates in the pedagogical 2D example. The Sobol’s total sensitivity 

indices (SIs) are also included. 

  𝛼 = 2 𝛼 = 4 𝛼 = 6 

𝑛 = 1000 
𝜔̂1 2.39 3.11 3.59 

𝜔̂2 -1.98 -2.12 -2.11 

𝑛 = 2000 
𝜔̂1 2.38 3.10 3.54 

𝜔̂2 -1.92 -2.18 -2.22 

Total SI 
𝑥1 1.00 1.00 1.00 

𝑥2 0.18 0.05 0.03 

 

To demonstrate the above feature in GAGP, the convergence 

histories for Ex3 and Ex4 are plotted in Figure 3 and Figure 4, 

respectively. Similar to Figure 1, it is evident that the estimated 

roughness parameters do not change noticeably as more samples 

are used in training (only 6 out of the 20 roughness parameters 

are plotted in Figure 4 for a clearer illustration). The values of 

these parameters can determine which inputs (and to what 

extent) affect the output. For instance, in Ex4, 𝜔8 is very small 

so the output must be almost insensitive to 𝑥8 . Additionally, 

since 𝜔4 ≅ 𝜔20, it is also expected that the corresponding inputs 

should affect 𝑦 similarly. These observations completely agree 

with the analytical relation between 𝒙 and 𝑦 in Ex4 where 𝑦 

is independent of 𝑥8 and is symmetric with respect to 𝑥4 and 

𝑥20. 
 

 
Figure 3 Convergence history in example 3 as the number of training 

samples is increased from 500 to 2000.  

The estimated variance, 𝛿𝜎̂2, in both examples fluctuates 

very closely around the true noise variance. 𝛿𝜎̂2  provides a 

useful quantitative measure for the expected predictive power 

(e.g., RMSE in future uses of the model). Additionally, similar to 

𝝎̂ , its convergence history helps in determining whether 

sufficient samples have been used in training. Firstly, the number 

of training samples should be increased until 𝛿𝜎̂2  does not 

fluctuate noticeably. Secondly, via k-fold CV during training, 

one should ideally recover the noise variance by calculating the 

RMSE associated with predicting the samples in the 𝑖𝑡ℎ  fold 

(when fold 𝑖 is not used in training). If these two values differ 

significantly, 𝑠 (or 𝑛𝑠) should be increased. For instance, if the 

fluctuations on the right panel in Figure 4 were large, we should 

have increased 𝑠  (from 6  to, e.g., 10) or 𝑛𝑠  (from 250  to, 

e.g., 500). 

 

 

Figure 4 Convergence history in example 4 as the number of training 

samples is increased from 500  to 2000 . For clearer demonstration, 

only six out of the twenty roughness parameters are plotted. 

5 DATA-DRIVEN DESIGN OF METAMATERIALS 
To demonstrate the application of GAGP in engineering 

design, we employ it in a new data-driven method for the 

optimization of metamaterial unit cells using big data. Although 

various methods, e.g., TO and genetic algorithm (GA), have been 

applied to design metamaterials with prescribed properties, these 

are computationally intensive and suffer from sensitivity to the 

initial guess as well as disconnected boundaries if multiple unit 

cells exist. A promising solution is to construct a large database 

of precomputed unit cells (aka microstructures or building 

blocks), enabling efficient selection of well-connected unit cells 

from the database and inexpensive optimization of new unit cells  

[9-12]. However, with the exception of [12] where unit cells are 

parameterized via geometric features like beam thickness, 

research in this area thus far use high-dimensional geometric 

representations (e.g., signed distance functions [9] or voxels 

[11]) that increase the memory demand and the complexity of 

constructing machine learning models that link structures to 

properties. Reducing the dimension of the unit cell is therefore a 

crucial step. 

In this work, we reduce the dimension of the unit cells in our 

metamaterial database with spectral shape descriptors based on 

the LB operator. We then employ GAGP to learn how the 

effective stiffness tensor of unit cells change as a function of their 

LB descriptors. After the GAGP model is fitted, we use it to 

discover unit cells with desired properties through inverse 

optimization. Furthermore, to present the advantages of a large 

unit cell database and GAGP, we compare the results to those 
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obtained using a conventional GP model fitted on a smaller 

database. 

5.1 Metamaterials Database Generation 
We propose a novel two-stage pipeline method inspired by 

[11] to generate a large training dataset of unit cells and their 

corresponding homogenized properties. For demonstration, our 

primary properties of interest are the effective stiffness tensor 

components, 𝐸𝑥  , 𝐸𝑦, and 𝐸𝑥𝑦 . As explained below, our method 

starts by building an initial dataset and then proceeds to better 

cover the input (geometry) and output (property) spaces.  

In stage one, to construct the initial dataset, we select design 

targets in the property space (the 3D space spanned by 𝐸𝑥  , 𝐸𝑦 , 

and 𝐸𝑥𝑦). As the bounds of the property space are unknown a 

priori, we sample 1000 points uniformly distributed in [0,1]3.  

Then, we use the SIMP (Solid Isotropic Material with 

Penalization) TO method [50] to find the orthotropic unit cells 

corresponding to each target. This stage generates 358 valid 

structures, while the remaining 642 points do not result in 

feasible unit cells, mainly because the uniform sampling places 

some design targets in theoretically infeasible regions. 

Moreover, TO may fail to meet the design targets due to 

sensitivity to the initial shape which is difficult to guess without 

prior knowledge. These 358 initial structures are shown in 

Figure 5 where the Poisson’s ratio is used instead of 𝐸𝑥𝑦  for a 

better illustration of the space. 

 
Figure 5 The property space of the initial database with 358 structures. 

In stage two, we further populate the initial database via a 

stochastic shape perturbation algorithm that generates distorted 

structures with slightly different properties from the original 

ones. This perturbation technique is performed iteratively to 

efficiently expand the property space by avoiding expensive TO 

in achieving prescribed properties. Specifically, the following 

radial distortion model is used to perturb an existing shape: 

 

𝑥𝑛𝑒𝑤 = { 
𝑥𝑐 +

𝑟𝑛𝑒𝑤

𝑟𝑜𝑙𝑑
(𝑥𝑜𝑙𝑑 − 𝑥𝑐) 𝑖𝑓  𝑟𝑜𝑙𝑑 ≤ 𝑅0  

𝑥𝑜𝑙𝑑                                𝑖𝑓  𝑟𝑜𝑙𝑑 > 𝑅0 
, (16)  

 

where 𝑥𝑛𝑒𝑤   and 𝑥𝑜𝑙𝑑   are the coordinates of the new and 

original pixel locations, 𝑥𝑐  is the coordinate vector of the 

distortion center, 𝑟𝑛𝑒𝑤   and 𝑟𝑜𝑙𝑑   are the new and original 

distances to the distortion center, and 𝑅0 is the outer distortion 

radius. 𝑟𝑛𝑒𝑤  can be expressed as: 

 

𝑟𝑛𝑒𝑤 =

{
 

 
1

2
 𝑅0 (1 − 𝑐𝑜𝑡 (

𝛾

2
) − 𝛽) 𝑖𝑓 𝛾 > 0

1

2
 𝑅0 (1 − 𝑐𝑜𝑡 (

𝛾

2
) + 𝛽) 𝑖𝑓 𝛾 < 0

 𝑟𝑜𝑙𝑑                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (17)  

 

where 

 

𝛽 = √
2

𝑠𝑖𝑛2(
𝛾
2⁄ )
− (1 + 𝑐𝑜𝑡 (

𝛾

2
) −

2𝑟𝑜𝑙𝑑 

𝑅0
)
2

, (18)  

 

and 𝛾 ∈ (−
𝜋

2
,
𝜋

2
)  is the angle that controls the amount of 

distortion. Considering the orthorhombic symmetry of the unit 

cells, only a quarter of the original structure is distorted and then 

reassembled to realize the full structure. We adopt the distortion 

model in Eq. (16) for two reasons. First, its parameters (i.e., 𝑅0, 
𝛾 , and 𝑥𝑐 ) have clear interpretations and hence can be easily 

tuned. In our case, they are all set as random variables with 

standard uniform distributions to generate a wide range of 

structures. Second, it preserves the topology of the original unit 

cell and introduces negligible artifacts (e.g., disconnections and 

checkerboard patterns) upon perturbation. 

To better cover the property space, the database is populated 

iteratively. In each iteration we first calculate the following score 

for all the available unit cells: 

 

𝑆𝑐𝑜𝑟𝑒 =
1

(𝑑+𝜀)2𝜌
, (19)   

 

where 𝑑  is the Euclidean (L2) distance between the stiffness 

tensor components of each unit cell to the boundaries of the 

region enclosing the current property space (see Figure 5 and 

Figure 6), 𝜌  is the number of data points inside the 

neighborhood within a given radius in the property space (in our 

experience, sampling is more uniform when 𝜌 = 0.05 ), and 

𝜀 ≪ 1 is used to avoid singularity. Then, we select the 𝑁 points 

with the highest scores for stochastic perturbation. The 

properties of newly generated structures are calculated via 

numerical homogenization [51] and added to the current 

property space for the next iteration. After each iteration, newly 

generated unit cells are checked and discarded if they contain 

infeasible features such as isolated parts. The perturbation is 

repeated until the boundary of property space does not expand 

significantly and the points inside the boundaries are relatively 

dense. In this second stage, the database is expanded from 358 

to 88000 unit cells that cover a wider range of properties (see 

Figure 6). 

5.2 Unit Cell Dimension Reduction via Spectral 
Shape Descriptors 

In the previous section, each unit cell in the database is 

represented by 50 × 50  pixels. For dimensionality reduction, 

we use spectral shape descriptors as they retain geometric and 

physical information. Specifically, we use the LB spectrum, also 

known as Shape-DNA, which can be directly calculated for any 

unit cell shape [52, 53]. 
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The LB spectrum is an effective descriptor for the 

metamaterials database for several reasons: (𝑖)  It has a 

powerful discrimination ability and has been successfully 

applied to shape matching and classification in computer vision, 

despite being one of the simplest spectral descriptors. (𝑖𝑖) All 

of the complex structures in our orthotropic metamaterials 

database can be uniquely characterized with the first 10-15 

eigenvalues in the LB spectrum. (𝑖𝑖𝑖) The spectrum embodies 

some geometrical information, including perimeter, area, and 

Euler number. This can be beneficial for the construction of the 

machine learning model as less training data may be required to 

obtain an accurate model compared to voxel- or point-based 

representations. (𝑖𝑣) Similar shapes have close LB spectrum, 

which may also help the supervised learning task.  

The calculation of the LB spectrum for each unit cell is as 

follows. For a real-valued function 𝑓 defined on a Riemannian 

manifold [52], the Helmholtz equation reads as: 

 

∆𝑓 = −𝜆𝑓, (20)  

 

where the Laplace-Beltrami operator ∆ is defined as: 

 

∆:= 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑 𝑓). (21)  

 

The eigenvalues of the Helmholtz equation are the LB 

spectrum and denoted: 

 

0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ < ∞. (22)  

 

We focus on the LB spectrum of a 2D shape under Dirichlet 

boundary conditions. In this case, the Helmholtz equation 

reduces to a Laplacian eigenvalue problem with the Dirichlet 

boundary condition: 

 
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
= −𝜆𝑓    𝑖𝑛 Ω

𝑓 = 0     𝑜𝑛 𝜏
, (23)  

 

where Ω and 𝜏 are the interior and boundaries of the domain 

of interest, respectively. 

 
Figure 6 The property space of the expanded database with 88,000 

structures. 

 

Finally, the finite element method is employed to obtain the 

LB spectrum of unit cells [54]  see Figure 7. It is noted that our 

88000 structures can be uniquely determined with only the first 

16 orders of LB spectrum, reducing the input dimension from 

50 × 50 = 2500 pixels to 16 scalar descriptors. In general, the 

computation of the LB spectrum takes only a few seconds per 

unit cell on a single CPU (Intel(R) Xeon(R) Gold 6144 CPU 

@3.50 GHz). Since this computation is performed once and can 

be run in parallel, the runtime is small. 

 

 
Figure 7 LB spectrum calculation: (a) Original structure, (b) Finite 

element mesh, and (c) The first eigenfunction. 

5.3 Machine Learning - Linking LB Representation 
to Property via GAGP 

Once the dataset is built, we follow the algorithm in Figure 

2 for machine learning, i.e., relating the LB representations of 

unit cells to their stiffness tensor. We use the same fitting 

parameters as in Sec. 4 (𝑛0 = 500, 𝑠 = 6, 𝑛𝑠 = 250), equally 

distribute the samples among the 𝑚 =
88000

500+6×250
= 44  GPs, 

and use Eq. (10) to have a multi-response model that leverages 

the correlation between the responses to have a higher predictive 

power. The convergence histories are provided in Figure 8, 

where the trends are consistent with those in Sec. 4. It is observed 

that the 16 estimated roughness parameters do not change 

noticeably once more than 1000 samples are used in training. 

In particular, 3  out of the 16  roughness estimates 

(corresponding to 𝜆14 = 𝜆15 = 𝜆16 ) are very small, indicating 

that the corresponding shape descriptors do not affect the 

responses  see Eq. (3). The next largest estimate belongs to 

𝜔13 ≅ −8 which corresponds to 𝜆13. The rest of the estimates 

are all between 2.5  and 3 , indicating that the first twelve 

eigenvalues (shape descriptors) affect the responses similarly 

and nonlinearly (since large 𝜔𝑖  indicates rough response 

changes along dimension 𝑖). These observations agree well with 

the fact that the higher order eigenvalues generally explain less 

variability in the data. The estimated noise variances (one per 

response) also converge, with 𝐸𝑥𝑦  having the largest estimated 

noise variance in the data, which is potentially due to larger 

numerical errors in property estimation.  

To illustrate the effect of expanding the training data from 

385 to 88000, we randomly select 28000 samples from the data 

for validation. Then, we evaluate the mean squared error (MSE) 

of the following two models on this test set: A conventional GP 

fitted to the original 385 samples and a GAGP fitted to the rest 

of the data (i.e., to 60000 samples, resulting in  𝑚 =
60000

500+6×250
= 30 models). To account for randomness, we repeat 

this process 20 times. The results are summarized in Table 4 and 

demonstrate that: (𝑖) Increasing the dataset size (stage two in 
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Sec. 5.1) creates a supervised learner with a higher predictive 

power (compare the mean of MSEs for GP and GAGP)  (𝑖𝑖) 
GAGP is more robust to variations than GP (compare the 

variance of MSEs for GP and GAGP)  (𝑖𝑖𝑖)  With 60000 

samples, the predictive power of GAGP is slightly lower than the 

case where the entire dataset is used in training (compare mean 

of MSEs for GAGP in Table 4 with the converged noise 

estimates in Figure 8). 

 

 
Figure 8 Convergence history as the number of training samples is 

increased from 500 to 2000. The 16 colored lines in the left panel 

indicate the histories of the 16 hyperparameters.  

 
Table 4 MSE errors on 28000 random samples. The mean and variance 

of MSE are calculated over 20 random repetitions. 

 Mean of MSE Variance of MSE (× 106) 

 𝐸𝑥 𝐸𝑦 𝐸𝑥𝑦  𝐸𝑥 𝐸𝑦 𝐸𝑥𝑦  

GP 0.048 0.007 0.028 39 5.5 0.45 

GAGP 0.008 0.001 0.011 0.12 0.0007 0.04 

 

5.4 Data-Driven Unit Cell Optimization 
In this section, we demonstrate how our GAGP model can 

be employed in an inverse optimization scheme to realize unit 

cells with target stiffness tensor components. Establishing such 

an inverse link is highly desirable in structure design as it allows 

to achieve desired elastic properties efficiently, obviating the 

tedious and expensive trial and error in TO. Additionally, though 

not demonstrated in this work, such a link can provide multiple 

candidate unit cells with the same properties that, in turn, enables 

tiling different unit cells into a macrostructure while ensuring 

boundary compatibility. 

Our data-driven optimization scheme has two steps: The 

search for the optimal LB spectrum and the reconstruction of the 

unit cell given the LB spectrum. Using our GAGP (or GP) model, 

we directly search for the LB spectrum of the unit cell with the 

desired properties. We use GA in this search process, which is 

formulated as: 

 

min
𝝀
‖𝑬𝑡 − 𝑬𝑝‖∞

𝑠. 𝑡.  𝜆𝑖−1 ≤ 𝜆𝑖
0.9𝜆𝑖

0 ≤ 𝜆𝑖 ≤ 1.1𝜆𝑖
0, (24)

  

 

where 𝑬𝑡  and 𝑬𝑝 are the vectors of, respectively, the target and 

predicted stiffness tensors, and 𝝀 = [𝜆1, … , 𝜆16]  and 𝝀𝟎  are 

the LB spectra of the current unit cell and the unit cell closest to 

the prescribed properties in the property space respectively, with 

𝜆𝑖  being the 𝑖𝑡ℎ  order eigenvalue. We choose GA for 

optimization since the GAGP model is cheap to run and GA 

ensures global optimality for multivariate and constrained 

problems. The search space for GA is defined by the LB 

spectrum of the unit cell in the training dataset whose properties 

are closest 𝑬𝑡. 
After obtaining the optimal LB spectrum, we use a level set 

method to reconstruct the corresponding unit cell based on [55], 

with the squared residuals of the LB spectrum as the optimization 

objective. For faster convergence, the unit cell closest to the 

optimal LB spectrum in the spectrum space is taken as the initial 

guess in the reconstruction process. 

In the following two examples, the goal is to design 

structures with desired 𝐸𝑥 , 𝐸𝑦 , and 𝐸𝑥𝑦   (see the targets in 

Figure 9). In each example, two unit cells are designed: one with 

the GP model (fitted to the initial set of 358) and one with the 

GAGP model (fitted to all 88000 structures). The results are 

visualized in Figure 9 and demonstrate that the unit cells 

identified from GAGP are more geometrically diverse than those 

obtained via GP. This is likely a direct result of populating the 

large dataset with perturbed structures and, in turn, providing the 

GA search process with a wider range of initial seeds. It is also 

noted that the unit cells designed with GP are similar in shape 

but different in the size of the center hole, which leads to a 

significant change in properties.  

 

Figure 9 Reconstructed unit cells in the two examples. The results are 

visualized in the property space, [𝐸𝑥, 𝐸𝑦, 𝐸𝑥𝑦]. 

From a quantitative point of view, it is observed that our 

data-driven design method with the large database can, as 

compared to the small dataset case, discover unit cells with 

properties that are closer to the target values. For instance, in 

Ex1, the GAGP result using the large dataset achieves the target 

𝐸𝑥, whereas the GP result from the small dataset differs from the 

target by around 12%. Ex2 shows a similar pattern, with the 

GAGP and GP results differing from the target 𝐸𝑥 by 4% and 

16%, respectively. When the small dataset is used, the greater 

deviations from the target properties can be mainly attributed to 

insufficient training samples and the relatively small search 

space. This reinforces the need for a large database of unit cells 
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in the data-driven design of metamaterials, along with an 

expedient machine learning method for big data. 

6 CONCLUSION AND FUTURE WORKS 
We propose a novel method to enable Gaussian process 

modeling of massive datasets. The central idea of our method, 

named globally approximate Gaussian process (GAGP), is based 

on the observation that the hyperparameter estimates of a GP 

converge to some limit values, 𝝎̂∞, as more training samples are 

used. We introduce an intuitive and straightforward method to 

find 𝝎̂∞ and, subsequently, build an ensemble of independent 

GPs that all use the converged 𝝎̂∞  as their hyperparameters. 

These GPs randomly distribute the entire training dataset among 

themselves, which allows to make inference based on the entire 

dataset by pooling the predictions from the individual GPs. 

With analytical examples, we demonstrated that GAGP 

achieves very high predictive power that matches (and in some 

cases exceeds) that of state-of-the-art machine learning methods 

such as neural networks and boosted trees. Unlike these latter 

methods, GAGP is easy to fit and interpret, which makes it 

particularly useful in engineering design with big data. In our 

approach, we assume that the noise is stationary with an 

unknown variance. Considering nonstationary noise variance 

would be an interesting and useful extension for GAGP. Thrifty 

sample selection for model refinement (instead of randomly 

taking subsets of training data) can also improve the predictive 

power of GAGP and is planned for our future works. 

As a case study, we applied GAGP to a data-driven 

metamaterials unit cell design process that achieves desired 

elastic properties by transforming the complex material design 

problem into a parametric one. After mapping reduced-

dimensional geometric descriptors (LB spectrum) to properties 

through GAGP, unit cells with properties close to the target 

values are discovered by finding the optimal LB spectrum with 

inverse optimization. This framework provides a springboard for 

a salient new approach to systematically and efficiently design 

metamaterials with optimized boundary compatibility, spatially 

varying properties, and multiple functionalities. 
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