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Abstract

Gaussian processes (GPs) are ubiquitously used in sciences and engineering as metamodels. Standard GPs, however, can
nly handle numerical or quantitative variables. In this paper, we introduce latent map Gaussian processes (LMGPs) that inherit
he attractive properties of GPs and are also applicable to mixed data which have both quantitative and qualitative inputs. The
ore idea behind LMGPs is to learn a continuous, low-dimensional latent space or manifold which encodes all qualitative
nputs. To learn this manifold, we first assign a unique prior vector representation to each combination of qualitative inputs.

e then use a low-rank linear map to project these priors on a manifold that characterizes the posterior representations. As
he posteriors are quantitative, they can be directly used in any standard correlation function such as the Gaussian or Matern.
ence, the optimal map and the corresponding manifold, along with other hyperparameters of the correlation function, can
e systematically learned via maximum likelihood estimation. Through a wide range of analytic and real-world examples, we
emonstrate the advantages of LMGPs over state-of-the-art methods in terms of accuracy and versatility. In particular, we
how that LMGPs can handle variable-length inputs, have an explainable neural network interpretation, and provide insights
nto how qualitative inputs affect the response or interact with each other. We also employ LMGPs in Bayesian optimization
nd illustrate that they can discover optimal compound compositions more efficiently than conventional methods that convert
ompositions to qualitative variables via manual featurization.
c 2021 Elsevier B.V. All rights reserved.

eywords: Gaussian processes; Emulation; Metamodeling; Mixed-variable optimization; Computer experiments; Manifold learning

1. Introduction

Metamodeling (a.k.a. emulation, surrogate modeling, or supervised learning) of physical experiments or ex-
ensive simulations is critical for the development of research in many fields of science and engineering. As an
xample, consider the design of the airfoil shape for an aircraft wing. Many possible airfoil designs exist and
esting each design, physically or via finite element (FE) simulations, could take minutes to possibly days. In this
cenario, metamodels accelerate the design process by mimicking the input–output behavior of the system in a
omputationally inexpensive manner. Many metamodels have been developed over the past few decades and some
f the most popular ones are based on Gaussian processes (GPs, aka Kriging) [1–11], neural networks (NNs) [12–
9], and trees [20–22]. In this paper, we focus on GPs which are easy to train, quantify prediction uncertainty, and
erform extremely well with sparse datasets [2,3,23–29].
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Fig. 1. Buckling of a column: For slender long members stability analysis based on buckling is necessary. The critical load, Pcr , that
arks the onset of buckling depends on the length, material, cross-section, and end-support type of the column.

As detailed in Section 2, a GP metamodel relies on a covariance function that measures the weighted distance
etween any two input variables. In many real-world applications some inputs may be qualitative/categorical
or which defining a distance measure is not straightforward. In such scenarios, traditional GPs break down as
heir covariance function cannot readily quantify the distances between qualitative inputs. To demonstrate such an
pplication, consider the stability analysis of an ideal column whose critical load that marks the onset of buckling
epends on four factors: material type, cross-section type, column length, and the end-support types, see Fig. 1 (we
ssume that the column buckles before it yields which is a valid assumption for long and slender members under
ompression). Three of these factors are qualitative (only length is quantitative) and hence a traditional GP cannot
e used to link the critical load, Pcr , to all four factors simultaneously. As another example, consider the material
esign problem of identifying the optimal composition of the lacunar spinal family XY aY b

3 Z8 with trivalent main
roup X , transition metal Y and chalcogenide Z ions [30]. The lacunar spinel family contains properties desirable
or microelectronics, and the goal is to find the composition that maximizes phase stability and band gap tunability.
n this design example, the inputs are all categorical and include elements for each site, e.g., either of {Al, Ga, I n}

or the X site. Since the differences such as Al − Ga are not defined, GPs are also not directly applicable to this
roblem. Other engineering systems with qualitative factors include (1) fiber composites whose tensile strength
epends on the fiber arrangement (unidirectional, bi-directional, random, woven, braided) [23,31], (3) cast metal
lloys whose fracture toughness depends on the machine identification number and degassing status, (3) a stamping
peration where system response (maximum strain over a stamped panel) depends on the lubricant type [32], and
4) thermal management of a data center where the thermal dynamics depends on diffuser location, power unit type,
r rack heat load nonuniformity [33].

There are three broad approaches for handling qualitative inputs with a GP. In the first approach distinct GPs
re trained for each combination of qualitative inputs. This approach is rarely adopted since it not only ignores
ossible correlations across qualitative variables, but also does not scale well to problems with even a moderate
umber of variables. In the second approach domain knowledge is used to manually convert qualitative inputs to
uantitative ones which can subsequently be used in a traditional GP. This approach is ad-hoc and quite expensive
ut can prove useful in problems where either the training data is extremely scarce or strong prior information is
vailable on the underlying numerical features that give rise to the nature of qualitative factors (see Section 5.4
or an example). The third approach requires re-structuring the covariance function. As detailed in Section 3, most
f these methods accommodate qualitative inputs via covariance functions that resemble those of multi-response
Ps [34] where each combination of the qualitative inputs corresponds to a single response.
Recently, Zhang et al. [32] developed a novel method that projects each qualitative input to a distinct continuous

atent space which allows to directly use the corresponding latent variables in the GP’s covariance function. This
ethod builds latent variable Gaussian processes (LVGPs) and has been shown to consistently outperform prior
ethods. From the standpoint of converting qualitative inputs to quantitative ones, LVGPs are similar to the second

pproach discussed above. However, instead of relying on domain knowledge and manual conversion, LVGPs
mploy the training data and maximum likelihood estimation (MLE) and hence are much more versatile, efficient,

nd generally more accurate.
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Fig. 2. Mixed Input data for the buckling example: The critical load, Pcr , is obtained via Euler’s formula for any length and any
combination of E, I , and K . To build a metamodel that predicts Pcr given the inputs, we train an LMGP using the dataset with the mixed
variables where the underlying numerical values are masked with arbitrarily chosen labels. We show in Section 4.3 that the latent space
of the trained LMGP clearly demonstrates that Pcr only depends on E I

K 2 rather than the individual labels (and hence the unseen individual
numerical values) assigned to these inputs.

Our method for handling qualitative variables is in spirit similar to LVGP in that we also work with systematically
learnt latent variables that encode each combination of qualitative inputs. However, as opposed to LVGP, our
method relies on a parametric map that projects all combinations of qualitative inputs to a single latent space.
Correspondingly, we call our method latent map Gaussian processes (LMGPs) and demonstrate in Sections 4 and 5
that they have some important advantages over LVGPs such as accommodating variable-length inputs or providing
insights into the underlying physics of the problem. To articulate on the latter advantage, we return to the buckling
example. We know that Pcr for an ideal column can be obtained by Euler’s formula:

Pcr =
π E I

(K L)2 =
π E I
(Le)2 , (1)

where E is the Young’s modulus, I is the (smallest) moment of inertial with respect to the neutral axes of the
cross-section, K is the effective-length factor that depends on the end-support types, L is the length of the column,
and Le is the equivalent length. Suppose we do not know Eq. (1) and only have access to a mixed dataset where
Pcr is recorded at various column lengths for different combinations of materials (aluminum or structural steel),
eam cross-section (I-beam, C-channel, or equal-leg angle), and end-supports (fixed, pinned, pinned and fixed, or
xed and free), see Fig. 2. In Section 4.1 we argue and demonstrate that LMGPs are capable of discovering the
ingle latent variable E I

K 2 which is neither directly observed nor a linear function of the qualitative inputs. An LVGP
odel, however, learns three distinct latent spaces in this example (one for each qualitative input) and hence fails

o indicate that there is a single underlying latent variable that completely encodes the effect of three qualitative
actors on Pcr . LVGPs are also incapable of handling variable length inputs.

The rest of the paper is organized as follows. Section 2 reviews standard methods for GP modeling. Section 3
ummarizes existing techniques developed for handling qualitative inputs via GPs. Section 4 discusses our proposed
trategy for training GPs on datasets that include qualitative inputs. Connections between the learnt latent space and
he underlying physics, neural network (NN) interpretation of LMGPS, and potential modifications to our approach
re also discussed in this section. Section 5 reports the results from evaluating our method against state-of-the-art
n a set of analytic functions, real-world datasets, and a Bayesian optimization problem. Section 6 concludes the
aper with some final remarks.

. Gaussian process modeling

In this section, we review how to fit GP models to a purely numerical training dataset whose inputs and outputs
re denoted by x = [x1, x2, . . . , xdx ]T and y, respectively. Assume the training data come from a realization of a
aussian random process, η(x), is defined as the following:

η (x) = f (x) β + ξ (x) ,
3
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where f (x) = [ f1 (x) , . . . , fh (x)] are a set of pre-determined parametric basis functions (e.g., x2
1 x2,

x2
2 sin (x1) , log (x1x2) , . . .), β = [β1, . . . , βh]T are the unknown coefficients of the basis functions, and ξ (x) is a

zero-mean GP. Since ξ (x) is zero-mean, it is completely characterized by its parameterized covariance function:

cov
(
ξ (x) , ξ

(
x′
))

= c
(
x, x′

)
= σ 2r

(
x, x′

)
, (2)

where σ 2 is the process variance and r (·, ·) is a user-defined parametric correlation function. There are many types
of correlation functions [1,35–37], but the most common one is the Gaussian correlation function defined as:

r
(
x, x′

)
= exp

{
−
∑dx

i=1 10ωi
(
xi − x ′

i

)2
}

= exp
((

x − x′
)T 10Ω

(
x − x′

))
, (3)

here ω =
[
ω1, . . . , ωdx

]T , −∞ < ωi < ∞ are the roughness or scale parameters (in practice the ranges are
imited to −10 < ωi < 6 to ensure numerical stability) and Ω = diag (ω). σ 2 and ω are collectively referred to as
he hyperparameters of the covariance function.

For GP emulation, point estimates of β, ω, and σ 2 must be determined based on the data. These estimates
an be found via either cross-validation (CV) or MLE. Alternatively, Baye’s rule can be applied to find posterior
istributions of the hyperparameters if prior knowledge is available. In this paper, MLE is employed because it
rovides a high generalization power while minimizing the computational costs [1,38]. MLE works by estimating
, ω, and σ 2 such that they maximize the likelihood of the n training data being generated by η (x), that is:[

β̂, σ̂ , ω̂
]

= argmax
β,σ 2,ω

⏐⏐2πσ 2 R
⏐⏐− 1

2 × exp
{

−1
2

( y − Fβ)T (σ 2 R
)−1

( y − Fβ)

}
,

Or equivalently,[
β̂, σ̂ , ω̂

]
= argmin

β,σ 2,ω

n
2

log
(
σ 2)

+
1
2

log (|R|) +
1

2σ 2 ( y − Fβ)T R−1 ( y − Fβ) , (4)

here log (·) is the natural logarithm, |·| denotes the determinant operator, y =
[
y(1), . . . , y(n)

]T is an n × 1 vector
f outputs in the training data, R is the n × n correlation matrix with the (i, j)th element Ri j = r

(
x(i), x( j)

)
for

, j = 1, . . . , n, and F is an n×h matrix with the (k, l)th element Fkl = fl
(
x(k)

)
for k = 1, . . . , n and l = 1, . . . , h.

y setting the partial derivatives with respect to β and σ 2 to zero, their estimates can be solved in terms of ω as
ollows:

β̂ =
[
FT R−1 F

]−1 [FT R−1 y
]
, (5)

σ̂ 2
=

1
n

(
y − Fβ̂

)T
R−1

(
y − Fβ̂

)
, (6)

Plugging these estimates into Eq. (4) and removing the constants yields:

ω̂ = argmin
ω

nlog
(
σ̂ 2
)
+ log (|R|) = argmin

ω

L . (7)

By minimizing L (i.e., solving Eq. (7)), one can solve for ω̂ and subsequently, obtain β̂ and σ̂ 2 using Eq. (5)
and (6). While many heuristic global optimization methods exist such as genetic algorithms [39] and particle swarm
optimization [40], gradient-based optimization techniques based on, e.g., the L-BFGS algorithm [41], are generally
preferred due to their ease of implementation and superior computational efficiency [3,35]. With gradient-based
approaches, it is essential to start the optimization via numerous initial guesses to improve the chances of achieving
global optimality.

After obtaining the hyperparameters via MLE, the following closed-form formula is used to predict the response
at any x∗:

E [y∗] = f (x∗) β̂ + gT (x∗) V −1
(

y − Fβ̂
)

, (8)

here E denotes expectation, f (x∗) = [ f1 (x∗) , . . . , fh (x∗)], g(x∗) is an n × 1 vector with the i th element(
x(i), x∗

)
= σ̂ 2r

(
x(i), x∗

)
, and V is the covariance matrix with the (i, j)th element σ̂ 2r

(
x(i), x( j)

)
. The posterior

ovariance between the responses at the two inputs x∗ and x′ is:

cov
(
y∗, y′

)
= c

(
x∗, x′

)
− gT (x∗) V −1 g

(
x′
)
+ h (x∗)T (FT V −1 F

)−1 h
(
x′
)
,

∗
(

∗ T −1 ∗
)

where h (x ) = f (x ) − F V g (x ) .
4
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The above formulations can be easily extended to cases where the dataset is noisy. GPs can address noise and
mooth data by using a nugget or jitter parameter, δ [42]. As a result, R becomes Rδ = R + δ In×n where In×n
s the identity matrix of size n × n. If the nugget parameter is used, the estimated (stationary) noise variance
n the data is δσ̂ 2. GPs are also applicable to multi-response datasets by using, e.g., a separable covariance
unction [34,43,44] which replaces σ 2 with the matrix Σ whose off-diagonal elements represent the covariance

between the corresponding responses at any fixed x.
As the above formulations indicate, GP modeling relies on the correlation function, r (·, ·) in Eq. (3). r (·, ·)

measures the correlation between the outputs at any two input locations as a function of the relative distance between
those two inputs. Since the distance between categorical variables (such as gender, zip code, country, material coating
type, etc.) cannot be directly defined, standard GP modeling techniques are not applicable to datasets that contain
categorical variables. This issue is well established in the literature [45] and in the next section, we review the
most common existing strategies that address it by reformulating the covariance function such that it can handle
categorical variables.

3. Existing approaches for handling categorical variables

Let us denote the categorical inputs by t =
[
t1, . . . , tdt

]T where the total number of distinct levels for qualitative
variable ti is mi . For instance, t1 = {92697, 92093} and t2 = {math, physics, chemistr y} are two categorical
nputs that encode zip code (m1 = 2 levels) and course subject (m2 = 3 levels), respectively. Inputs for mixed
numerical and categorical) training data are collectively denoted by w = [x; t] which is a column vector of size
dx + dt ) × 1.

.1. Unrestrictive covariance (UC)

One popular strategy for GP modeling with categorical variables, introduced by Qian et al. [46], assumes a
orrelation function with the following form:

r
(
w, w′

)
=
∏dt

i=1 τ i
l,l ′ × exp

{
−
(
x − x′

)T 10Ω
(
x − x′

)}
, (9)

here τ i
l,l ′ is a parameter that correlates levels l and l ′ of the variable ti . That is, Eq. (9) assigns the correlation

atrix τ i to the categorical variable ti where τ i
l,l ′ serves as a distance metric between levels l and l ′ of ti . Since

i is a correlation matrix, it must be symmetric positive definite with unit diagonal elements. Hence, there are a
otal of

∑dt
i=1 mi (mi − 1) /2 parameters that need to be estimated (in addition to Ω) in Eq. (9). Since the number

f hyperparameters in the UC function increases quadratically, it is not applicable to problems where there are
any levels or categorical variables. Even in simple problems, the constraints on τ i render the optimization of the

og-likelihood function quite difficult. Additionally, Eq. (9) has limited generalization power. For example, as Deng
t al. [47] point out, if τ i

l,l ′ is estimated as 0 for any categorical variable, the entire correlation between two sample
oints, r

(
w, w′

)
, reduces to 0.

.2. Multiplicative covariance (MC)

Multiplicative covariance function is a simplified version of the UC function [46] which assumes that for all
t ̸= t ′:

τ i
l,l ′ = exp

{
−
(
θ i

l + θ i
l ′
)}

, (10)

here θ i
l > 0 is a parameter associated with the lth level of categorical variable ti . That is, Eq. (10) assigns a

number to each level of each categorical variable and hence requires estimating a total of
∑dt

i=1 mi parameters (in
addition to Ω) during the MLE process. While the MC function is simpler to optimize than the UC function, it
is quite inflexible [48]. To demonstrate this, consider a scenario where there is one categorical variable with four
levels. Also, suppose that the response surfaces corresponding to (i) levels 1 and 2 are highly correlated, (i i) levels
3 and 4 are highly correlated, and (i i i) levels 1 and 2 are uncorrelated with those of levels 3 and 4. According to
Eq. (10), we need to have θ1 ≈ θ2 ≈ 0 for the response surfaces for levels 1 and 2 to be highly correlated. With a
similar reasoning, we have θ3 ≈ θ4 ≈ 0. However, for the response surfaces of levels 2 and 3 to be uncorrelated,

θ2 + θ3 must be large, which cannot be true if both are close to zero.

5
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a

3.3. Additive Gaussian process (AGP)

The UC and MC strategies both assume a multiplicative covariance structure. Deng et al. [47] proposed a new
dditive covariance structure as follows:

c
(
w (x, t) , w′

(
x′, t ′

))
=
∑dt

i=1 σ 2
i τ i

l,l ′r
(
x, x′

|ωi
)

where r
(
x, x′

|ωi
)

is the Gaussian correlation function as defined in Eq. (3) with correlation parameter vector ωi

associated with qualitative factor ti , σ 2
i is the prior variance term for categorical variable ti , and τ i

l,l ′ has the same
definition as in Eq. (10). According to Deng et al. [47], the AGP is more flexible than the UC function when there
are multiple categorical variables. This is because the UC model assumes a fixed covariance structure over the
numerical features, x, for all categorical variables while the additive structure does not. However, the AGP also
has a few major limitations. For example, the optimization based on MLE involves estimating a total number of
(1 + dx )×dt +

∑dt
i=1 mi (mi − 1) /2 parameters which rapidly increases as the dimensionality of the problem grows.

Visualization of how the underlying response surface changes within and across the categorical variables is also not
straightforward with AGP.

3.4. Latent Variable Gaussian Process (LVGP)

Latent Variable Gaussian Process [32,49] is a recent work that handles categorical variables by learning a latent
space of dimensionality dz for each categorical variable ti for i = 1, . . . , dt . In other words, the mi levels of ti are
represented as mi points in the i th latent space. With this latent representation, the distance between any two points
is defined. Hence, the latent points can be directly used in any standard correlation function such as the Gaussian:

r
(
w, w′

)
= exp

{
−
∑dt

i=1

zi (ti ) − zi
(
t ′

i

)2
2 −

(
x − x′

)T 10Ω
(
x − x′

)}
, (11)

where zi (l) =

[
zi

1 (l) , . . . , zi
dz

(l)
]T

is the latent space point corresponding to level l (for l = 1, . . . , mi ) of the
qualitative factor ti and ∥·∥2 denotes the Euclidean 2-norm. With this formulation, all the latent points (along
with ω) can be found via MLE as described in Section 2 where Eq. (3) must be replaced via Eq. (11). Zhang
et al. [32] recommend using a 2D latent space for each categorical variable where three constraints are imposed
to ensure translation and rotation invariances in each 2D space. Thus, fitting an LVGP model involves estimating
dx +

∑dt
i=1 (2mi − 3) parameters.

Zhang et al. [32] show that LVGP consistently outperforms previously mentioned strategies in a wide range of
problems. This superior performance is primarily because (i) in many real-world scenarios, categorical variables
represent underlying numerical features whose collective effects can be captured in the learned 2D latent space,
and (i i) the correlation function in Eq. (11) provides a much more versatile reformulation and does not impose any
a priori relation between the categorical variables.

4. Latent map Gaussian process (LMGP)

Our proposed approach, similar to LVGP, involves mapping categorical variables to some points in a latent space.
However, there are two key differences between LMGP and LVGP. Firstly, instead of directly estimating the latent
positions, LMGP learns a linear transformation that maps a prior representation of the categorical variables to the
latent space. Secondly, LMGP uses a single latent space while LVGP uses a unique latent space for each categorical
variable. As argued below and shown in Section 5, these differences make LMGP a more versatile and scalable
metamodel than LVGP.

In Sections 4.1–4.3 we provide the motivation for LMGP and the technical details, respectively. In Section 4.4,
we draw some connections between LMGP and some other concepts (NNs, sufficient dimension reduction, and
active subspaces) and also introduce an extension that enables LMGP to handle variable-length (or conditional)
categorical inputs.
6
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4.1. Motivations for latent space representation

Mapping categorical variables into a latent space has a strong justification because in all physical systems
ith such inputs, there exist some underlying numerical features that characterize the levels of each categorical
ariable. This is clearly the case for the buckling example introduced in Section 1 where the critical load depends
n the column’s material type, cross-section type, and end-support type which are sufficiently quantified by Young’s
odulus (E), moment of inertia of the cross-section (I ), and effective-length factor (K ), respectively. In other words,

E, I , and K are the latent variables that encode the effects of the corresponding qualitative factors on Pcr for an
deal column. For instance, E encapsulates the effective strength of a large number of material bonds at different
ength-scales which resist lateral deflections of the column by absorbing energy.

In the simple buckling example, we a priori knew the mapping between the qualitative factors and the
orresponding sufficient latent variables via the Euler equation. In more complex problems, these relations are
enerally either unknown or too high-dimensional to directly encode. To demonstrate such a complex case, recall
he design problem regarding the lacunar spinal family discussed in the introduction. The differences between the
ualitative factors (i.e., the elements in the periodic table) can be captured through some numerical features such as
tomic number, atomic mass, or number of valence electrons. It is evident that there are many underlying numerical
eatures that characterize the level-wise differences in a qualitative factor (e.g., l1 vs l2 of t1) or across different
ualitative factors (e.g., l1 of t1vs l1 of t2). This intrinsic high-dimensionality and the fact that we do not know (or
annot observe/measure) all the underlying numerical features challenge the identification of the few latent variables
hat sufficiently encode the qualitative factors.

To address the above challenges we note that in most physical problems the underlying numerical features are
enerally highly correlated and some of them have little effect on the response of interest [12,50]. Hence, with an
ppropriate learning algorithm and a representative training dataset, a low dimensional latent space can be learned
hat sufficiently quantifies the underlying numerical features. Returning to the buckling example, we can show via
ither LMGP or Euler’s formula in Eq. (1) that instead of assigning a latent variable to each qualitative factor (as
VGP does), a single latent variable can sufficiently characterize the effect of all qualitative factors on Pcr . These
nd similar arguments underlie the widespread use of latent variables in deep NNs which, unlike LMGP, have a
arge number of parameters and are generally constructed using big data.

.2. Emulation via LMGP

LMGP begins with an initial latent space representation of the categorical inputs. This prior representation is
hen projected to a lower dimensional space via a linear map which is learned via MLE, see Fig. 3. In particular,
e first assign a unique vector (i.e., a prior representation) to each combination of the categorical variables. Then,
e use matrix multiplication to map each of these unique vectors to a point in a latent space of dimensionality dz :

z (t) = ζ (t) A,

here t is a particular combination of the categorical variables, z (t) is the 1 × dz posterior latent representation of
t , ζ (t) is the 1 ×

∑dt
i=1 mi unique prior vector representation of t , and A is a

∑dt
i=1 mi × dz mapping matrix that

aps ζ (t) to z (t). These points can now be directly inserted into any standard correlation function such as the
aussian:

r
(
w, w′

)
= exp

{
−
z (t) − z

(
t ′
)2

2 −
(
x − x′

)T 10Ω
(
x − x′

)}
. (12)

Finally, we optimize A simultaneously with Ω = diag (ω) via MLE:[
ω̂, Â

]
= argmin

ω,A
nlog

(
σ̂ 2)

+ log (|R|) ,

here R and σ̂ 2 are now functions of both ω and A. When a 2D latent space is used (dz = 2), which we do
n this paper, three constraints can be applied to the posterior latent positions to ensure rotation and translation
nvariance of the learned representation. Denoting the horizontal and vertical axes of this posterior space by z1 and

z2, respectively, these constraints are: (i) The first latent position is located at the origin (z1 = z2 = 0), (i i) the

econd latent position has z1 ≥ 0 and z2 = 0, and (i i i) the third latent position has z2 ≥ 0.

7
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Fig. 3. Learning latent space via LMGP: The high-dimensional prior representations of categorical variables are mapped into a 2D latent
space where the mapping is learnt via MLE. The mapped are colored based on the levels of t1. In this illustrative example, changing the
level of t1 affects the latent positions more and hence the response is more sensitive to t1 than t2.

While A is learned via MLE based on some training data, the prior representations, ζ (t), are user defined and
can affect the performance of LMGP. We propose two strategies for defining ζ (t). One method, which we call the
random initialization, is to define ζ (t) as a 1 ×

∑dt
i=1 mi vector of random values ranging from, e.g., 0 to 1 (other

ranges can be used which will result in larger/smaller estimates for the elements of A). For instance, consider the
example in Section 3 where t1 = {92697, 92093} and t2 = {math, physics, chemistr y}. With random initialization,
ζ (t) for each combination of levels of the categorical variables is defined as follows:⎡⎢⎢⎢⎢⎢⎢⎣

{92697, math}

{92697, physics}
{92697, chemistr y}

{92093, math}

{92093, physics}
{92093, chemistr y}

⎤⎥⎥⎥⎥⎥⎥⎦ →

⎡⎢⎢⎢⎢⎢⎢⎣
ζ (1, 1)

ζ (1, 2)

ζ (1, 3)

ζ (2, 1)

ζ (2, 2)

ζ (2, 3)

⎤⎥⎥⎥⎥⎥⎥⎦ = χ6×5, χi j ∼ Uni (0, 1)

where ζ (a, b) is the unique vector representation when the first and second categorical variables are at levels a and
b, respectively, and χ is a matrix whose elements are independent and identically distributed (IID) random numbers
that follow a standard uniform distribution. While χ is random and completely changes1 each time we fit an LMGP
to a particular dataset, our studies indicate that the resulting latent positions (and hence the accuracy of LMGP) are
not affected. This consistency in posterior representation is provided by A whose elements are estimated via MLE.
Furthermore, to reduce computational costs (esp. in very high dimensional problems), one can reduce the number
of columns of χ which will reduce the number of rows of A. This strategy is very appealing when the number
of categorical variables and/or their levels are high. However, we found through testing that this would be at the
expense of potential reduction in prediction performance.

The second initialization strategy is to use a grouped one-hot encoded vector for ζ (t) that consists of 1s and
0s. In a 1 − 0 vector representation, the 1s correspond to the levels used for each categorical variable while the
0s correspond to the rest of the levels. By applying this approach to the zip code-course subject example, ζ (t) is
obtained as follows:⎡⎢⎢⎢⎢⎢⎢⎣

{92697, math}

{92697, physics}
{92697, chemistr y}

{92093, math}

{92093, physics}
{92093, chemistr y}

⎤⎥⎥⎥⎥⎥⎥⎦ →

⎡⎢⎢⎢⎢⎢⎢⎣
ζ (1, 1)

ζ (1, 2)

ζ (1, 3)

ζ (2, 1)

ζ (2, 2)

ζ (2, 3)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
6×5

In our studies, the 1 − 0 representation consistently outperformed the random representation based on the
performance of LMGP on test data. It also resulted in better structured latent positions that more clearly demonstrate

1 Assuming the random number generator seed is not fixed.
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the relations between the categorical variables and their relative effect on the response. These favorable properties
are because the 1 − 0 representation acts as an informative prior that helps LMGP in distinguishing the interactions
between categorical variables and their levels. However, the random vector representation provides an uninformative
prior where ζ (t) is not generated based on any knowledge of the categorical variable levels.

To verify that LMGP is actually utilizing knowledge of the levels used for each categorical variable, we compared
its prediction performance in two scenarios: standard LMGP (as described above with 1 − 0 representation) and

MGP that lumps all categorical variables into a single new one where each level corresponds to a set of levels
or the original categorical variable. Consider the zip code-course subject example again. By combining the two
ategorical variables into a single new categorical variable, ζ (t) becomes a diagonal matrix as shown below:⎡⎢⎢⎢⎢⎢⎢⎣

{92697, math}

{92697, physics}
{92697, chemistr y}

{92093, math}

{92093, physics}
{92093, chemistr y}

⎤⎥⎥⎥⎥⎥⎥⎦ →

⎡⎢⎢⎢⎢⎢⎢⎣
ζ (1)

ζ (2)

ζ (3)

ζ (4)

ζ (5)

ζ (6)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
6×6

Because the categorical variables are combined into a single new categorical variable, the levels used for each
categorical variable is unknown to LMGP. Thus, poorer prediction performance is expected. Through testing, we
found that standard LMGP consistently outperformed LMGP with the categorical variables combined. This implies
that the prior knowledge of the levels for each categorical variable is assisting LMGP with discovering a more
representative latent position structure.

We argue that LMGP is a more suitable approach to latent space learning than LVGP because of the following
four key reasons. Firstly, LMGP provides a systematic mechanism to embed prior knowledge (the 1 − 0 vector
representation in our case) into the training process while LVGP directly estimates the latent positions. Our
mechanism greatly improves the optimization process which, in turn, results in models with higher predictive power.
Secondly, mapping all possible t vectors to a single latent space (as opposed to having a latent space for each
categorical variable) allows the user to analyze and visualize the interactions across the categorical variables. Thirdly,
while LMGP requires estimating more hyperparameters than LVGP, it achieves a more aggressive dimensionality
reduction (the total number of hyperparameters in LMGP and LVGP are dx +2×

∑dt
i=1 mi and dx +

∑dt
i=1 (2mi − 3),

respectively, for dz = 2). This is because all the latent positions in LMGP are enforced to lie on a single latent
space (aka manifold [51]) while LVGP uses a manifold for each categorical variable. Lastly, LMGP avoids non-
identifiability issues that LVGP encounters: As we show in Section 5.1, when LVGP is trained on noisy data where
one or more of the categorical variables have negligible effect on the response, the latent positions cannot be robustly
estimated because their effect on the correlation function is akin to that of the nugget parameter. We demonstrate
some of these remarks below and the rest in Section 5.

4.3. Interpreting the latent space

We introduced the buckling example in the introduction and elaborated on its latent space representation in
Section 4.1. In this section we demonstrate that an LMGP can discover the single sufficient latent variable E I

K 2 that
ncodes the effect of the qualitative factors (material type, cross-section type, and end-support type) on Pcr .

Following the procedures outlined in Section 4.2, we fit an LMGP with dz = 2 to a mixed data of size n = 100
here the numerical values are masked with randomly chosen labels, see Fig. 2 for the relations between labels

nd the corresponding numerical values (these relations are not used when training the LMGP). The latent positions
earned via LMGP are illustrated in Fig. 4 where the range of z2 is much smaller than that of z1. This observation
ndicates that a single latent variable is sufficient to encode the effect of the three qualitative inputs on Pcr .

To demonstrate that the horizontal axis indeed encodes E I
K 2 we include the numerical value of E I

K 2 that corresponds
to each latent position in Fig. 4. As it can be observed, these values monotonically increase from left to right (this
direction is a result of forcing Aa1 and Ba1 to be at, respectively, the origin and the positive side of z1). Note that
he relation between E I

K 2 and z1 is nonlinear since, while Pcr linearly depends on E I
K 2 , E [y∗] in Eq. (8) nonlinearly
epends on z1 through the correlation function in Eq. (12).

9
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Fig. 4. Latent positions learned via LMGP for the column buckling example: Each latent position corresponds to a set of levels for
each categorical variable in the borehole function. The first, second, and third categorical variables correspond to E , K , and I , respectively.
Since the scale of the vertical axis is much smaller than that of the horizontal axis, we conclude that all the points lie almost on a horizontal
line and hence this problem possess a single sufficient latent variable. The numbers in the gray boxes indicate the numerical values of E I

K 2

which monotonically increase from left to right. These numbers are not observed by LMGP which uses the mixed data in Fig. 2.

We now use a more complex and high-dimensional function to further demonstrate some of the nice properties
of LMGPs. The borehole function [52] is ubiquitously used to assess the performance of surrogates. It is defined
as:

y =
2πTu (Hu−Hl )

ln
(

r
rω

)(
1+

2LTu
ln( r

rω )r2
ω Kω

+
Tu
Tl

) .
(13)

The inputs of the borehole function are all quantitative. To have mixed variables, we convert Tl , L , and Kw

into categorical variables with 5, 3, and 3 levels, respectively. Each level corresponds to a distinct numerical value
unknown to LMGP (see Table 11 in the Appendix for details). The latent space positions estimated via LMGP
are demonstrated in Fig. 5 where the legend shows the combination of levels (the triplets belong to Tl , L , and Kw,
respectively) that corresponds to a point in the 2D latent space. Notice that the range of the axes is quite different
and that the estimated latent positions are structured on a grid with eight vertical and five horizontal lines. On the
vertical lines only the level of the first categorical variable changes (to see this, locate the markers with the same
shape in the legend) while on the horizontal lines either the level of L or Kw changes. This figure suggests that
the underlying function, while having 3 categorical variables, only depends on two hidden features. Furthermore,
the range of the axes indicates that one of these hidden features affects the response, i.e., y in Eq. (13), more than
the other. This relative importance of the two features is deduced from the term −

z (t) − z
(
t ′
)2

2 in Eq. (10): in
Fig. 5, the hidden feature that is encoded by the horizontal axis has more variations and thus contributes more to
this term. The higher contribution indicates that this feature affects the response more than the feature encoded by
the vertical axis.

To relate the above insights with the underlying function, we rewrite the borehole function as:

y =
C1

C2

(
1+C3

L
Kw

+
C4
Tl

) = f
(

L
Kw

, Tl , C1, C2, C3, C4

)
(14)

here the numerical variables are all lumped to C1, C2, C3 and C4. Eq. (14) clearly shows that the three original
ategorical variables can be compressed to two variables, namely, L/Kw and Tl . In fact, these two variables are the

idden features that LMGP learns purely based on the data. That is, in Fig. 5, one axis encodes Tl while the other

10
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Fig. 5. Latent positions learned via LMGP for the borehole function: Each latent position corresponds to a set of levels for each
categorical variable in the borehole function. The first, second, and third categorical variables correspond to Tl , L , and Kw , respectively.
The points with the same level of Tl are structured approximately on a horizontal line. The points with the same levels of L and Kw are
structured approximately on a vertical line. The underlying numerical value of L/Kw is indicated in the gray box on top of each vertical
line.

Table 1
Underlying numerical values of L/Kw: Values are reported for each combination of levels for L and Kw .

Level of L 1 1 1 2 2 2 3 3 3
Level of Kw 1 2 3 1 2 3 1 2 3
L/Kw 0.167 0.100 0.083 0.233 0.140 0.117 0.333 0.200 0.167

axis encodes L/Kw (note that the latter is a nonlinear function of the original variables L and Kw). Next, we find
the correspondence between the axes of the latent space with L/Kw and Tl .

Table 1 lists the underlying numerical value of L/Kw for each combination of levels for L and Kw. By matching
these numbers with the latent points in Fig. 5 it can be seen that each vertical line is associated with a unique number
and that these numbers monotonically decrease from left to right. That is, the left- and right-most latent positions
have, respectively, the largest (L/Kw = 0.333) and the smallest (L/Kw = 0.083) values. Notice that the ratio L/Kw

is 0.167 when L and Kw both have a level of either 1 or 3 (see the first and last columns of Table 1). This situation
is also accurately reflected in the latent space where the corresponding latent positions overlap (see the black and
red markers in Fig. 5). The preceding discussions highlight that LMGP accurately discovers the latent feature that
captures the collective effects of both L and Kw. This latent feature is encoded by the horizontal axis in Fig. 5 and
thus the vertical axis encodes Tl .

While the latent representation along the horizontal axis in Fig. 5 is consistent with the ratio L/Kw, the
same is not true for Tl . The underlying numerical values of Tl are organized in ascending order (they are
[10, 30, 100, 200, 500], see Table 11). So, a monotonically ascending/descending order is expected for the levels of
Tl in the latent space (The latent axis can have either an opposite or similar ordering as the underlying numerical
values. In case of the horizontal axis, the positive direction is aligned with a reduction in L/Kw). That is, the levels
of Tl on the horizontal lines from top to bottom in Fig. 5 should be either [1, 2, 3, 4, 5] or [5, 4, 3, 2, 1]. Instead, we
see that the corresponding levels of Tl are ordered as 3, 2, 1, 5, and 4 (from bottom to top on each horizontal line).
To better understand why LMGP seems to discover a sub-optimal latent representation for Tl , we employ Sobol
sensitivity analysis [53].

Sobol sensitivity analysis is a method used for analyzing each input’s total contribution to the output variance
given the range of the inputs. The input’s total contribution to the output variance can be decomposed into two parts:
variance from each individual input and variance from interactions among inputs. Table 2 lists each input’s total

contribution to the output variance, referred to as the “total-effect index”, for the borehole function in Eq. (13). The

11



N. Oune and R. Bostanabad Computer Methods in Applied Mechanics and Engineering 387 (2021) 114128

o
l

Table 2
Total-effect index: The total-effect index is a metric that defines each input’s total (individually and through interaction) contribution to the

utput variance. Unlike L and Kw , Tl almost has no effect on the variability of the response which makes it difficult to encode it in the
atent space.

Tu Hu Hl r rw Tl L Kw

Total-effect index 0.0000 0.0463 0.0465 0.0000 0.7445 0.0001 0.1290 0.1177

ranges used for the numerical features are described in Table 11, and the ranges used for the categorical variables
are the maximum and minimum underlying numerical values which are also listed in Table 11.

Table 2 quantitatively indicates that Tl has a much smaller total-effect index than L or Kw. In fact, the extremely
small sensitivity index of Tl signals that it almost has no effect on the response. This behavior is the reason that
LMGP cannot find the correct latent representation for the varying levels of Tl . The sensitivity indices in Table 2
also explain why the range of the axes in Fig. 5 are quite different: since Tl negligibly affects the response, its
contribution to the correlation function (through the term −

z (t) − z
(
t ′
)2

2 in Eq. (12) should be small which, in
turn, requires small vertical distance between the latent points in Fig. 5.

4.4. Discussions and extensions

In this section, we first elaborate on the connections between NNs and LMGPs which can lead to further
developments of LMGPs. Then, we compare LMGPs with sufficient dimension reduction and active subspaces.
Finally, we discuss how to handle variable-length (or conditional) inputs with LMGPs.

4.4.1. Neural network interpretation of LMGP
LMGP can be perceived as an NN that encodes the categorical variables to a latent space as shown in Fig. 6.

In this particular NN architecture, the latent space mapping in LMGP corresponds to a single hidden layer with
linear activation functions and no bias terms (due to MLE’s translation invariance). For this hidden layer, ζ (t) is
the input, z (t) is the output, and A represents the neural network weights.

Fig. 6. Neural network interpretation of LMGP with a 2D latent space: Categorical data, t , are converted to prior vector representations,
ζ (t), and fed into the network’s hidden layer that maps ζ (t) to z using linear activation functions and no bias. The LMGP covariance
structure then uses x and z as inputs to approximate y.

With this interpretation, we can extend LMGP in a few ways. First, we can increase the number of hidden layers
and their neurons to improve the learning capacity at the expense of increasing the number of hyperparameters that
must be estimated. Second, we can use a nonlinear activation function (e.g., sigmoid, swish, or tangent hyperbolic)
instead of a linear one. In our studies, we have observed marginal changes when testing the second idea but the
integration of the two ideas may be more effective.

4.4.2. Active subspaces and sufficient dimension reduction
Active subspace methods use the gradient information for dimensionality reduction [54]. Assuming the gradient

of the function is available at training points, one starts by rotating the input space (i.e., a linear transformation
12
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via singular value decomposition, SVD) to separate the directions based on their variability. The input space is
then projected to the directions where the most variability is observed. Finally, surrogate modeling (with GPs or
any other method) is done at this lower dimensional space which is called the active subspace of the underlying
function.

LMGP is similar to active subspace methods in that they both rely on linear transformations. However, there
re some fundamental differences between the two. First, unlike LMGP, active subspaces are not applicable to
ategorical data as the derivates are not defined. Second, while both methods reduce dimensions through some
inear transformations, the underlying mechanism behind LMGP is different because it is supervised, relies on

LE (rather than SVD), and does not require gradient information (it is noted that some active subspace methods
lso do not require gradients, for example if a GP is used for metamodeling [55]).

Similar to active subspace methods, the core idea behind sufficient dimension reduction is to build a surrogate
sing a lower dimensional input space that is constructed via a linear transformation (SVD) of the original input
pace [56–58]. Sufficient dimension reduction does unsupervised dimension reduction (the responses may be used
o slice the covariance matrices though) and cannot handle categorical inputs.

.4.3. Variable-length categorical inputs
Both standard LMGP and LVGP cannot accept variable-length inputs. However, LMGP can be easily modified

o handle variable-length inputs. We demonstrate this using the zip code-course subject example where t1 =

{92697, 92093} and t2 = {math, physics, chemistr y}. Assume that when t1 = 92093, t2 is no longer an input,
i.e., the system’s response is independent of t2 if t1 = 92093. This conditional situation is illustrated in Table 3

here NaN indicates that the categorical variable is not an input (or if it is an input, it does not affect the system’s
esponse).

Table 3
Combinations of levels for the variable-length example: All combinations of levels for
the first and second categorical variable are listed. When the level is NaN , that categorical
variable is not an input given the level of the other categorical variable.

First categorical variable Second categorical variable

1 1
1 2
1 3
2 NaN

To make LMGP compatible with variable-length categorical inputs, only the prior vector representations need to
e adjusted. Applying the 1 − 0 representation described in Section 4.1 to the current example results in:⎡⎢⎢⎣

ζ (a = 1, b = 1)

ζ (a = 1, b = 2)

ζ (a = 1, b = 3)

ζ (a = 2, NaN )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 NaN NaN NaN

⎤⎥⎥⎦
where ζ (a, b) is the unique vector representation when the first and second categorical variables are at levels a
and b, respectively Because NaN is not a valid value it must be replaced with a number. For this, we propose two
potential approaches. One strategy is to replace NaN values with IID random numbers so ζ (t) for each combination
of levels of the categorical variables becomes:⎡⎢⎢⎣

ζ (a = 1, b = 1)

ζ (a = 1, b = 2)

ζ (a = 1, b = 3)

ζ (a = 2, NaN )

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 χ χ χ

⎤⎥⎥⎦ , χ ∼ Uni (0, 1)

Another strategy is to simply replace all NaN values with 0. In Section 5.3, we see through testing that both
strategies yield very similar performance.
13
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Table 4
List of analytical functions: The functions possess a wide range of dimensionality and complexity. When emulating each function, we

se training datasets of sizes 100, 200, 300,and 400. We also add IID normal noise to both training and test data. Three noise variances are
considered for each function. The smallest variance is 0 in all cases while the other two depend on the range of the function.

ID-Name [Ref] Function

1− OLT Circuit [59]
y =

(Vb1 + 0.74) β (Rc2 + 9) + 11.35R f

β (Rc2 + 9) + R f
+

0.74R f β (Rc2 + 9)(
β (Rc2 + 9) + R f

)
Rc1

Vb1 =
12Rb2

Rb1 + Rb2

2− Piston Simulator [59]

y = 2π

√ M

k + S2 P0V0T
T0V 2

V =
S

2k

√
A2 + 4k

P0

T0
T , A = P0 S + 19.62M −

kV0

S

3− Borehole [52] y =
2πTu (Hu−Hl )

ln
(

r
rω

)(
1+

2LTu
ln( r

rω )r2
ω Kω

+
Tu
Tl

)

4− Effective Potential [60]

y = 100∗
9
2

x9ε
2
m +

x8x10

1 + x7

[
εeq

x10

]1+x7

ε =

⎛⎝ x1 x6 x5
x6 x2 x4
x5 x4 x3

⎞⎠ , εm =
1
3

T r (ε) , εd = ε − εm1,εeq =

√
2
3

(εd : εd )

5− Wing Weight [61] y = 0.036S0.758
ω W 0.0035

f ω

(
A

cos2(Λ)

)0.6
q0.006λ0.04

(
100tc

cos(Λ)

)−0.3 (
Nz Wdg

)0.49
+ SωWp

6− Custom Function [62] y = 4
(
x1 − 2 + 8x2 − 8x2

2

)2
+ (3 − 4x2)

2
+ 16

√
x3 + 1 (2x3 − 1)2

+
∑8

i=4 iln
(

1 +
∑i

j=3 x j

)

5. Results

In this section, we compare the performance of LMGP against LVGP and also apply LMGP to two variable-
ength problems. We do not compare LMGP with the other methods reviewed in Section 3 as LVGP is shown to
onsistently outperform them [32]. Both algorithms are coded in Matlab and leverage continuation [35] to estimate
he optimum nugget variance. More algorithmic details on both LMGP and LVGP are provided in the Appendix,
ee Appendix A.1.

In Section 5.1, we compare LMGP to LVGP using six analytical functions with various sample sizes, noise
evels, and number of categorical variables. In Section 5.2, we apply both methods to two real-world datasets and
n Section 5.3 we analyze the performance of LMGP on handling variable-length categorical inputs. Finally, in
ection 5.4 we use LMGP in Bayesian optimization for identifying the compound composition that maximizes the
ulk modulus.

.1. Analytical functions

Table 4 summarizes the analytical functions used for comparing LMGP to LVGP. Since these functions only
ave numerical variables, we modify them by converting a few numerical features into categorical features. That is,
ach level of the categorical variables corresponds to an underlying numerical value unknown to LMGP and LVGP.
he underlying numerical values for the categorical variable levels for each analytical function are listed in the

Appendix, see Appendix A.2. These analytical functions are chosen as they have a wide range of dimensionality
nd degree of nonlinearity. Additionally, the conversion of numerical variables to categorical ones allows to have
ultiple categorical variables with many levels, see Table 5.
For testing, we compare the performance across various training dataset sizes (ranging between 100 to 400

amples) and noise levels, which varies based on the range of the analytical function. After fitting LMGP and
VGP, we then evaluate the mean squared error (MSE) across 10,000 test samples. Training and validation input
amples are (for both quantitative and categorical variables) generated via Sobol sequence [63–65]. To account for
14
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Table 5
Input descriptions: The numerical (in red) and categorical (in blue) inputs, their ranges, and the number of
level combinations, bt , are listed for each function.

randomness and measure consistency, the training and validation processes are repeated 10 times with a new dataset
each time.

Fig. 7 summarizes the MSE results and indicates that LMGP consistently outperforms LVGP across all noise
evels for large training datasets. In particular, LMGP achieves a test MSE on noisy data that is very close to the
oise variance which indicates that it is able to extract as much information from the data as possible. With small
atasets, LVGP often outperforms LMGP and is more robust. We believe this is due to the fact that LMGP has
ore hyperparameters than LVGP and hence needs more data. Additionally, we note that in two cases (borehole

nd wing weight functions), increasing the training dataset size decreases LVGP’s performance which is unintuitive
ecause the performance is generally expected to improve once more data are used in training. This unintuitive
ehavior of LVGP is due to its failure in distinguishing noise from variables that negligibly affect the response.
or instance, in the borehole function, one of the categorical variables, Tl , insignificantly affects the response, as

evidenced by its Sobol index in Table 2. In this case, LVGP is mistakenly interpreting the variations in y that are
rooted in Tl to be due to noise. This non-identifiability issue is not seen in LMGP as it is able to distinguish noise
rom categorical variables that marginally affect the response.

Fig. 8 shows the estimated noise variance via LVGP and LMGP across all the functions when 400 training
amples are used. From the boxplots, we see that LMGP more accurately estimates the noise variances in all cases
xcept for the OLT circuit model (although the difference is very small in this case). When LVGP is less accurate,
oise estimates are off quite noticeably. We believe that the combination of embedding prior information on the
ategorical variable levels and using a single latent space for all categorical variables allows LMGP to discover a
ore general solution, making noise estimation via MLE easier.
In terms of computational costs, LVGP is more efficient than LMGP with small datasets. However, as the size

f the training dataset or the variance of the added noise increase, the computational performance of LMGP gains
dvantage over LVGP. These trends are illustrated in Fig. 9 for the borehole function (other functions exhibit very
imilar trends, see Appendix A.3 and we explain them as follows. The total number of hyperparameters that must be
ptimized using MLE for LMGP and LVGP are dx +2×

∑dt
i=1 mi and dx +

∑dt
i=1 (2mi − 3), respectively (assuming

both approaches use dz = 2). With small data, this difference in the number of optimization parameters dominates

the computational costs. However, as either the noise variance or the number of samples increase, LMGP is better

15



N. Oune and R. Bostanabad Computer Methods in Applied Mechanics and Engineering 387 (2021) 114128
Fig. 7. Results on analytical functions: We compare LMGP to LVGP across six different analytical functions. For each case, LMGP and
LVGP are fitted to datasets of sizes 100, 200, 300, and 400 with three different noise levels (one noise level being 0 and the other two
depending on the range of the analytical function). 10,000 noisy test data points are used to obtain MSE. The training and validation process
are repeated 10 times to account for randomness.

able to distinguish between the required nugget parameter and the latent positions and hence gains some speedups
over LVGP.

Compared to other metamodels such as NNs and random forests, the overall training costs of both LMGP and
LVGP are much lower in applications with small to medium size and dimensionality. For instance, as opposed to
LVGP and LMGP, an NN requires tuning the architecture and optimization settings (e.g., learning rate) which can
be time-consuming.

5.2. Real-world datasets

In this section, we compare the performance of LMGP, LVGP, and standard GP across two datasets: the Boston

housing dataset [66] and auto-MPG dataset [67]. In the former dataset, the goal is to predict the median housing
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Fig. 7. (continued).

rices in the suburbs of Boston in 1978. The dataset has 506 samples, 13 inputs, and one output. Since the output
s capped at 50, the output of some samples is not trustworthy. Hence, we remove samples whose output is 50. As a
esult, the number of samples is reduced to 503. For LMGP and LVGP, CHAS (Charles River dummy variable) and
AD (index of accessibility to radial highways) are treated as categorical inputs. For GP, all inputs, all inputs are

reated as numerical. The dataset is randomly split into 70% training and 30% validation. To account for randomness,
he comparison test is performed 10 times.

In the auto-MPG dataset, the goal is to predict the MPG of various cars based on 8 inputs. After removing
amples with missing values, 392 samples are available. For LMGP and LVGP, the number of cylinders and origin
i.e., the country the car was built in) are treated as categorical inputs while all inputs are treated as numerical for
P. The dataset is randomly divided into 50% training and 50% validation, and the comparison test is performed
0 times.

Table 6 summarizes the results which show that LMGP slightly outperforms LVGP. Both models perform better
P, especially with the auto-MPG dataset. LMGP and LVGP perform similarly in these two datasets for the
ollowing reasons: (i) Both datasets only have two categorical variables where none of them has many levels,
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Fig. 8. Estimated noise variance: Each time LVGP and LMGP are fitted, the noise variance is estimated using the training data. For each
analytical function, 400 training samples are used with the injected noise levels indicated by the dashed red line in each subplot. It is clear
that on average LMGP estimates the noise variance more accurately (narrower box plots located close to the horizontal red dashed line
indicate better performance).

Table 6
Results on real world datasets: The performance of LMGP, LVGP, and GP are analyzed across two real-world
datasets. For each dataset, 10 different permutations of training and validation subsets are used, and the mean
(µM SE ) and standard deviation (σM SE ) of mean squared error (MSE) is reported.

(i i) the categorical variables have little interaction, and (i i i) at least one of the categorical variables has little
effect on the response. GP’s poor performance on the auto-MPG dataset is likely because the input, origin, should
not be treated as a numerical input while the other categorical variables have some justification for being treated
as numerical features. We note that the performance of LMGP and LVGP is either better or comparable to that
of state-of-the-art NNs fitted to these datasets [68–71]. Unlike NNs, however, neither LMGP nor LVGP require
iterative adjustment of, e.g., architecture, learning rate, or epoch number. In other words, training LMGP and LVGP
is much simpler on such a small to medium size dataset.

5.3. LMGP for variable-length categorical inputs

In this section, we analyze the performance of LMGP for handling variable-length categorical inputs. To this
end, we reuse the borehole and OLT circuit functions defined in Table 4 with some modifications. In particular,
we remove certain categorical variables based on the level of other categorical variables. As shown in Table 7, we
18
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Fig. 9. Training costs for the borehole function: The rows and columns are organized based on training dataset size and noise variance,
respectively.

Table 7
Combinations of levels: Listed are all cases, for the borehole and OLT circuit model, when one of the categorical
variables is not an input (i.e., is NaN) given the level of the other categorical variables.

Levels of Cat. Variable 1
Tl (borehole) and Rb1 (OLT)

Levels of Cat. Variable 2
L (borehole) and R f (OLT)

Levels of Cat. Variable 3
Kw (borehole) and β (OLT)

1 1 NaN
2 NaN 2
NaN 3 3

remove (i) the third categorical variable when the first two categorical variables are at their respective level one,
(i i) the second categorical variable when the first and third categorical variables are at their respective level two,
and (i i i) the first categorical variable when the last two categorical variables are at their respective level three.
Regarding the underlying function, when the categorical variable is NaN , we set the variable to a numerical value
as if it were another level (see Table 8). Note that this value is unknown to LMGP and not used in any way during

the training.

19



N. Oune and R. Bostanabad Computer Methods in Applied Mechanics and Engineering 387 (2021) 114128

M

g
b
r
d
c
p

5

t

Table 8
Underlying numerical values: When a categorical variable’s level is set to NaN (i.e., the cases listed in Table 7), the
underlying analytical function simply sets the categorical variable to an underlying numerical value while LMGP treats
the variable as if it is no longer an input.

Borehole model OLT circuit model

Tl L Kw Rb1 R f β

Underlying value 350 1100 8000 35 1 2

Fig. 10. Comparing LMGP methods for handling variable-length inputs: Using the borehole and OLT circuit model, we compare
predictive performance between two methods of handling variable-length inputs: The random and zero approach. The strategy of setting
NaN to a random value, χ , and 0 will be denoted as the zero and random approach, respectively. Both methods perform similarly with an

SE close to the injected noise variances.

For each function, we randomly generate 400 training samples and 10,000 test samples following the data
eneration strategy described in Section 5.1. We add IID normal noise with different variances (see Fig. 10) to
oth training and test data. We then fit LMGP to the training data and evaluate it on the test data. To account for
andomness, the procedures are repeated 10 times. Fig. 10 summarizes the results and indicates that both strategies
escribed in Section 4.4.3 have similar performance. In particular, they both achieve MSE on test data relatively
lose to the applied noise, implying that the “Zero” and “Random” approaches are not causing significant losses in
rediction performance.

.4. Material design with Bayesian optimization

In this section, we apply LMGP to a material design problem previously studied in [72] where the goal is
o use as few data points as possible (from a dataset of size 240 [73]) to find the elements in the family of
M2 AX compounds that maximize bulk modulus. These compounds are nanolaminate ternary alloys that exhibit
many of the beneficial properties of both ceramic and metallic materials and hence are appealing for many
technological applications [73–75]. The family of M2 AX compounds have three building blocks that can take on
different elements: an early transition metal M = {Sc, T i, V, Cr, Zr, Nb, Mo, H f, T a, W }, a main group element
A = {Al, Si, P, S, Ga, Ge, As, Cd, I n, Sn, T l, Pb}, and either carbon or nitrogen X = {C, N }.

A direct strategy for finding the optimal compound is to compute the bulk modulus for all the 10 × 12 ×

2 = 240 candidates via density functional theory (DFT). However, this approach is suboptimal because DFT is
computationally expensive. An alternative strategy is to use Bayesian optimization (BO) to discover the optimum
compound by only obtaining the modulus of some of the candidates via DFT. A generic BO framework starts by
fitting a probabilistic predictive model to an initial training data. Then, this model is used in an acquisition function
that balances exploration and exploitation to identify the next candidate that must be evaluated and added to the
training data. This three-step iterative process (that consists of model training, evaluation of acquisition function,

and updating the training data) continues until the convergence criterion is met (e.g., resources are exhausted).
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In BO, the user chooses the acquisition function and model type [76–79]. In this paper, we use expected
mprovement (EI) for the acquisition function defined as:

E I (x) = E
[
max

(
ymax − ŷ (x) , 0

)]
, (15)

here E [·] denotes the expectation operator, ymax is the best candidate in the current training dataset, and ŷ (x)

s the prediction for candidate x. If the model’s prediction has a normal distribution with mean µ (x) and variance
(x), Eq. (15) takes on the following closed form formula:

E I (x) = (ymax − µ (x))Φ
(

ymax −µ(x)

σ (x)

)
+ σ (x) φ

(
ymax −µ(x)

σ (x)

)
, (16)

here Φ (·) and φ (·) denote, respectively, the cumulative distribution and probability density functions of the
tandard normal distribution, N (µ = 0, σ = 1).

Choosing the type of the predictive model is a challenge for this design optimization problem because all inputs
re categorical where each categorical variable corresponds to a site (M, A, or X ) and the levels represent potential
lements for each respective site (e.g., C or N for site X ). The strategy adopted in [72] is to use domain knowledge
o convert categorical variables into quantitative inputs which can then be used in a standard GP. In particular, in
his strategy each element (e.g., Sc, Al, or C) is characterized with its orbital radii (s-, p-, and d-orbital radii for
lements at site M while s- and p-orbital radii for A and X sites2) which, in turn, converts a candidate compound
nto a 7D quantitative variable.

Unlike the strategy of [72], LMGP can be directly applied to the original dataset which eliminates the time-
onsuming and problem dependent feature engineering step. This is advantageous because the replaced numerical
ariables may not sufficiently represent the effects of changing an element in one of the three sites. To demonstrate
his benefit, we compare standard GP (with the categorical variables replaced with the 7D numerical variables) to
MGP when they are used as the predictive model in BO. In particular, we exclude the compound with the largest
ulk modulus from the original dataset and then start the BO with randomly selected 20 compounds. We continue
aking samples from the original dataset, one by one as guided by the acquisition function in Eq. (16), until the
est compound is found. To compare GP vs. LMGP, we record the number of additional samples that BO evaluates
ntil convergence. To account for the randomness, we repeat this process 30 times where each time a unique set of
nitial compounds is used.

Fig. 11 is a histogram of the number of additional samples needed before finding the optimal compound which
ndicates that, on average, LMGP and GP require sampling 16.38 and 18.13 additional compounds, respectively.
hus, LMGP is more likely to find the optimal compound earlier than standard GP. We believe this is because

he numerical features chosen for standard GP do not sufficiently capture the effects of switching elements for
ach site. LMGP does not assume the underlying numerical variables are solely defined by the orbital radii and
hus, it is more flexible. Furthermore, we emphasize that LMGP did not require domain knowledge to identify
he underlying numerical variables. This eliminates the need for feature engineering and makes our strategy very
esirable for materials design and analysis where the underlying numerical features are not even known by domain
xperts. Lastly, we note that similar to LMGP, LVGP can also be directly applied to this material design problem.
s illustrated in Fig. 11, the performance of both methods is very close and both outperform GP.
We close this section by noting that, unlike LVGP, LMGP can benefit from domain knowledge in a straight-

orward setting. For instance, in this materials design example, the grouped one-hot encoded prior vectors, that is
(t), can be replaced with quantitative vectors whose elements are selected based on s-, p-, and d-orbital radii (or

any other features deemed to characterize the differences between different elements). Note that this approach is
different than a Bayesian approach where prior distributions are placed on the parameters (both LVGP and LMGP
will benefit from a Bayesian implementation where in LMGP priors will be placed on the A matrix while in LVGP
the priors will be placed on the latent positions). We will investigate these approaches in our future works.

6. Conclusion

In this paper we introduced LMGPs which are extensions of GPs that can build surrogates with quantitative
and qualitative inputs. As we showed, the main idea behind LMGPs is to learn a linear map that converts each
combination of qualitative inputs to a point in a low-dimensional latent space. Since these latent points are endowed

2 It is unclear why d-orbital radius is not used for A and X sites.
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Fig. 11. Results of Bayesian optimization: We compare the performance of LMGP, LVGP, and standard GP across 30 tests, each with a
unique initial dataset of 20 compounds. The histograms indicate the number of additional compounds required to sample before finding the
compound with the highest bulk modulus (smaller is better). The average and median number in each case is shown with, respectively, the
blue and red dashed vertical lines.

with an automatically learned distance measure, they can be directly used in any standard correlation function such
as the Gaussian or Matérn.

We estimated the optimal linear map simultaneously with other hyperparameters by maximizing the Gaussian
likelihood function. Alternatively, a Bayesian approach can be used to find the posterior distribution of LMGP’s
linear map. We have not pursued this in our studies yet.

By interpreting the linear map as an operator that projects all prior latent representations to their corresponding
posteriors, we studied the effect of priors on LMGP. We showed that an informative prior consisting of grouped
one-hot encoded inputs helps LMGP in building well-structured latent spaces and maximizes the performance on
test data. Other types of priors may be more useful in applications where the fitted LMGP has to satisfy some
physical constraints or where there is some prior knowledge on how qualitative inputs are related.

LMGPs can be interpreted as neural networks with certain architecture and activation functions. This interpreta-
tion opens up interesting possibilities that we will study in our future works. For instance, (i) the current linear map
an be converted to a highly nonlinear one by adding hidden layers with nonlinear activation functions (e.g., sigmoid
r swish activations), (i i) physics-informed LMGP can be built by infusing governing dynamics to the loss function,
r (i i i) very high-dimensional inputs–outputs can be handled by using convolutional layers.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

cknowledgments

We thank the original authors of LVGP for providing their Matlab code to compare the performance of LMGP
o LVGP. We also thank the anonymous reviewers as well as Professor Daniel Apley for his detailed feedback
n LMGP. This work was supported by the Advanced Research Projects Agency-Energy, USA (ARPA-E), U.S.
epartment of Energy, under award number DE-AR0001209.

ppendix

.1. Selection of LVGP and LMGP parameters

For LVGP, the hyperparameter ranges are limited to: ωi ∈ [−8, 3], zi
j (ti ) ∈ [−5, 5], and δ ∈ [0.1, 1E − 10].

or LMGP, the hyperparameter ranges are limited to: ωi ∈ [−8, 3], Ai, j ∈ [−1, 1], and δ ∈ [0.1, 1E − 10]. Both
MGP and LVGP estimate all the hyperparameters via a gradient-based optimization approach that starts the search
ia 12 initial, randomly selected points.

.2. Underlying numerical values

In this section, we list the underlying numerical value associated with the different levels of each categorical

ariable for the analytical functions introduced in Section 5.1 (see Tables 9–14).
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Table 9
Underlying numerical values: OLT circuit model [1].

Categorical variable level Rb1 R f R f

1 25 0.5 1
2 32.5 2 4
3 40 3 5

Table 10
Underlying numerical values: Piston Simulator Model [2].

Categorical variable level M S V0

1 30 0.005 0.002
2 40 1 0.4
3 50 2 1

Table 11
Underlying numerical values: Borehole Model [3].

Categorical variable level Tl L Kw

1 10 1000 6000
2 30 1400 10000
3 100 2000 12000
4 200 N/A N/A
5 500 N/A N/A

Table 12
Underlying numerical values: Effective Potential Model [4].

Categorical variable level x7 x8 x9 x10

1 0.1 1 5 0.01
2 0.25 2 10 0.02
3 0.7 4 12.5 0.1
4 0.8 9 25 0.3
5 1 10 30 0.5

Table 13
Underlying numerical values: Wing Weight Model [5].

Categorical variable level Sw W f w tc Wdg

1 150 220 0.08 1700
2 180 250 0.12 2000
3 200 300 0.18 2500

Table 14
Underlying numerical values: Custom Function [6].

Categorical variable level x3 x4 x8

1 0 0 0
2 0.1 0.2 0.4
3 0.3 0.7 1
4 0.6 1 N/A
5 0.7 N/A N/A
6 1 N/A N/A

A.3. Training costs

See Figs. 12–14.
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Fig. 12. Training costs for the OLT circuit function: The rows and columns are organized based on training dataset size and noise
variance, respectively.
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Fig. 13. Training costs for the borehole function: The rows and columns are organized based on training dataset size and noise variance,
respectively.
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Fig. 14. Training costs for the Piston simulator function: The rows and columns are organized based on training dataset size and noise
variance, respectively.
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