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a b s t r a c t

Computational analysis, modeling, and prediction of many phenomena in materials require a three-
dimensional (3D) microstructure sample that embodies the salient features of the material system
under study. Since acquiring 3D microstructural images is expensive and time-consuming, an alterna-
tive approach is to extrapolate a 2D image (aka exemplar) into a virtual 3D sample and thereafter use
the 3D image in the analyses and design. In this paper, we introduce an efficient and novel approach
based on transfer learning to accomplish this extrapolation-based reconstruction for a wide range of
microstructures including alloys, porous media, and polycrystalline. We cast the reconstruction task as
an optimization problem where a random 3D image is iteratively refined to match its microstructural
features to those of the exemplar. VGG19, a pre-trained deep convolutional neural network, constitutes
the backbone of this optimization where it is used to obtain the microstructural features and construct
the objective function. By augmenting the architecture of VGG19 with a permutation operator, we
enable it to take 3D images as inputs and generate a collection of 2D features that approximate an
underlying 3D feature map. We demonstrate the applications of our approach with nine examples
on various microstructure samples and image types (grayscale, binary, and RGB). As measured by
independent statistical metrics, our approach ensures the statistical equivalency between the 3D
reconstructed samples and the corresponding 2D exemplar quite well.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The heart of computational materials science lies in unravel-
ing processing-microstructure–property relations across multiple
length and time scales which, in turn, provides the foundation to
design materials with unprecedented properties. Computational
analysis, modeling, and prediction of many phenomena in ma-
terials (such as fatigue [1], fracture [2], transport properties [3],
manufacturing-induced residual stresses [4], delamination [5])
require a three-dimensional (3D) microstructure sample1 that
embodies the most important features of the microstructure un-
der study (e.g., size and spatial distribution of inclusions or voids).
Recent advances in imaging techniques [6–8] have enabled the
collection of high resolution 3D maps of microstructures that
can be used in computer simulations. However, obtaining 3D
images is extremely costly and time-consuming. Since acquiring

✩ This paper has been recommended for acceptance by A. Pasko.
E-mail address: Raminb@uci.edu.

1 The three dimensions refer to height, width, and depth (or thickness).
Number of channels is not counted toward the dimensionality of the image
in this paper. For instance, an RGB image with H and W pixels along its height
and width, respectively, is 2D and needs a 3D array of size h×w×3 for storage
in a computer.

2D microstructural images is relatively simpler and inexpensive,
an attractive alternative is (upon making some assumptions) to
extrapolate a 2D image (aka exemplar) into a virtual 3D sample
and thereafter use the 3D image in simulations. The goal of this
paper is to introduce an efficient and novel approach based on
transfer learning to accomplish this extrapolation-based recon-
struction for a wide range of microstructures (composite, alloy,
porous, polycrystalline, etc.) and image types, i.e., single channel
(binary or grayscale) or multi-channel (RGB).

From a historical standpoint, computational microstructure
reconstruction can be traced back to 1974 where Joshi [9] and
then Quiblier [10] reconstructed porous media by level-cutting
Gaussian random fields (GRFs) whose correlation functions were
fitted to experimental data on the scattering power of electro-
magnetic radiation [11–14]. Since then, many methods have been
developed to reconstruct microstructures from a given exemplar
or some data that characterizes the exemplar (e.g., scattering
power). In all these methods, microstructure reconstruction is
cast as an optimization problem with the goal of minimizing
an appropriately defined loss (aka cost or energy) function that
measures the differences between the characterized information
obtained from the exemplar and the microstructure being re-
constructed. Since such information generally has a probabilistic
nature (e.g., void spatial distribution or average pore size), the
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reconstructed microstructure is said to be statistically equivalent
to the exemplar. With this viewpoint, different methods can be
categorized based on the characterization scheme which, con-
sequently, determines the features that the 3D microstructure
should possess. Following this classification, relevant works to
this paper that can extrapolate a 2D exemplar into a 3D structure
are reviewed below.

A microstructure can be characterized with some statistical
functions such as n-point correlation [11,15], lineal-path [16–19],
and cluster correlation [20]. These functions essentially quan-
tify microstructural features with some probability distributions.
Assuming these probabilities are the same between the 2D ex-
emplar and the desired 3D microstructure, one can build a 3D
microstructure by refining an initial random 3D structure such
that the differences between its statistical functions and those
of the exemplar are minimized. The so-called stochastic recon-
struction (SR) method achieves this minimization using a heuris-
tic optimization algorithm (e.g., simulated annealing [21–24] or
genetic algorithm [25–27]) where the voxels of the initial 3D
image are randomly swapped until the loss function that mea-
sures the statistical differences is minimized. The SR method has
been previously used to reconstruct 3D porous media from 2D
exemplars [25,28–36].

All the variants of the SR method incorporate the two-point
correlation function (S2 (r) where r measures the pixel-wise or
voxel-wise distance in an image) into the loss function. De-
pending on the microstructure, additional measures such as the
lineal-path function, L (r), are also considered in the loss function
to ensure the reconstructed microstructure embodies the impor-
tant features of the exemplar [16,20,23,37–39], see Appendix for
technical details on S2 (r) and L (r). This addition, while increasing
the reconstruction fidelity, has two main disadvantages (i) it
significantly increases the computational costs [40–42], and (ii)
it is problem dependent since complete characterization of dif-
ferent microstructures (e.g., polycrystalline, particulate, porous,
or stochastic) requires different statistical functions; rendering
the optimal choice of statistical functions ambiguous in some
cases [43]. It is noted that, assuming a microstructure can be com-
pletely characterized solely via two-point correlation function,
the phase recovery method [44–49] can be used instead of the
SR method for reconstruction. The reconstruction cost in SR and
phase recovery methods rapidly grows as the number of phases
increases. Hence, due to computational reasons, these methods
are incapable of reconstructing grayscale or RGB images.

As an alternative to statistical functions, physical descriptors
(e.g. average pore or grain size) can be used to characterize
the 2D exemplar. In this case, the heuristic optimization process
aims to match the characteristics of the descriptors in the recon-
structed image to the corresponding ones in the exemplar with
some assumptions [50–56]. Characterization via physical descrip-
tors is particularly desirable for microstructure design [57] as it
sensibly models topological features and allows to build process-
structure–property relations. In the context of microstructure re-
construction, however, this method has some limitations. Firstly,
it relies on image analysis to extract the characteristics of the
descriptors from the exemplar and is only applicable to cer-
tain microstructures (e.g., particulate or semi-particulate) with
limited number of phases (i.e., inapplicable to grayscale or RGB
images). Additionally, one needs to a priori know the descrip-
tors that should be used during characterization, image analy-
sis, and optimization. For example, because transport processes
in particulate heterogeneous materials is sensitive to nearest
neighbor distances between particles [58], one has to match the
distributional characteristics (e.g., the mean and variance) of this
descriptor in the exemplar and the 3D reconstructed sample.

Recently, some methods based on texture synthesis have been
employed for microstructure reconstruction [59–63] with the

Fig. 1. (Color online) Transfer learning for 3D microstructure reconstruction: The
colors (green and purple) distinguish the information flow from the exemplar
and initial image to the loss function.

assumption that the exemplar can be characterized as a station-
ary Markov random field (MRF). Texture synthesis originated in
computer graphics with the basic idea of synthesizing a texture
(i.e., a stationary image) given a small exemplar. The early works
in [64–66] established the general framework of texture synthesis
but it was the pioneering works of Efros and Leung [67,68]
and Wei and Levoy [69] that resulted in practical solutions by
reformulating the problem of texture synthesis to an exemplar-
based framework. In short, these works addressed the ill-posed
nature of the problem by assuming that the exemplar is a real-
ization of a stationary MRF and has the spatial locality property.
These assumptions imply that the conditional probability dis-
tribution of brightness value of any pixel (voxel in 3D), given
the brightness values of its neighboring pixels, is independent
from the rest of the image. This conditional probability distri-
bution, however, is not explicitly modeled and a 3D image is
reconstructed by repeatedly querying the given 2D exemplar.
Specifically, the reconstruction is usually done voxel-by-voxel in
a specific order (e.g. raster scan) where each voxel’s value in the
reconstructed image is found by searching for the pixel (or set of
pixels) in the exemplar whose neighboring pixels best match the
neighbors (along three orthogonal planes) of the voxel to be gen-
erated. Reconstructing large microstructures that do not satisfy
the stationary MRF assumptions via this method is impractical.
Additionally, the quality of the reconstructed images greatly de-
pends on the neighborhood size used in the search process (which
is oftentimes chosen manually via ad hoc methods) [70] and the
reconstruction order has been shown [71] to affect microstruc-
ture quality in texture synthesis (e.g. a bottom-up raster-scan vs.
a top-down raster-scan).

In this paper, a novel approach based on transfer learning is
developed to reconstruct a 3D microstructure using a single 2D
exemplar. The fundamental idea is, as demonstrated in Fig. 1, to
restructure a pre-trained 2D deep learning model2 in such a way

2 A 2D deep learning model refers to one that takes one (or a batch of) 2D
image(s) as input.
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Fig. 2. (Color online) Internal architecture of VGG19: This pre-trained deep learning model has 5 blocks where each block has either two or four convolution layers
as well as one average pooling layer at the end. While the size of the layers decreases from left to right (along the depth of VGG19), the number of filters (aka
channels) per layer increases. The dense layers at the end of VGG19 are not demonstrated since they are for labeling images and not used in this paper.

that a 3D image can be used as its input. Upon this restructur-
ing, reconstruction is cast as an optimization problem where an
initial random image is optimized to match its microstructural
features to the exemplar’s features. We employ a pre-trained
deep learning model for microstructure characterization because
it can automatically extract a wide range of features (grains,
edges, particles, etc.) from different types of microstructures, see
Fig. 6 through Fig. 8 for some examples. We elaborate on the
nature of these features and how they are used in our approach
in Sections 2.1 and 2.3, respectively.

It is highlighted that if a pre-trained 3D model was avail-
able, the abovementioned restructuring would not be required.
However, to the author’s best knowledge, a general-purpose pre-
trained 3D model that can extract a wide range of microstructural
features is unavailable. Additionally, a 3D model would need a
3D exemplar as input which violates the premise of this work
(i.e., one does not have a 3D image and would like to build one
given a 2D exemplar). Due to these reasons, we employ a pre-
trained 2D deep learning model in our approach. 2D deep models
such as VGG16 and VGG19 [72], Inception [73], and Xception [74]
are extremely powerful in quantitatively characterizing a wide
range of 2D images and our restructuring mechanism allows to
extend their power to 3D.

While transfer learning has been previously used for mi-
crostructure reconstruction [40,75–77], the efforts have been
limited to reconstructing 2D binary or ternary structures that
are statistically equivalent to a given 2D exemplar. The primary
differentiating factors between this paper and [40,75–77] are
extrapolation from 2D to 3D and exclusion of any image pre-
and post-processing procedure (e.g., smoothing or refining of any
sort). Additional advantages of this work over the state-of-the-art
methods (e.g., SR, texture synthesis, and phase recovery) include
reasonable computational expenses and applicability to a wide
range of microstructures (e.g., composites, polycrystalline, alloys,
porous, and inhomogeneous) and image types (binary, grayscale,
or RGB) without any modification to the method.

The rest of the paper is organized as follows. In Section 2
some background on transfer learning is provided with more
emphasis on the pre-trained deep learning model, VGG19 [72],
used in this paper. Then, the proposed method is introduced and
details on the restructuring idea, feature extraction, loss function,
and optimization are discussed. In Section 3, nine different 3D
samples are reconstructed to demonstrate the applicability of the
method to different microstructures and image types. Concluding
remarks and future works are provided in Section 4.

2. Reconstruction via extrapolative transfer learning

We first describe how 2D microstructural features can be
extracted via VGG19. Then, our idea on dimension to batch con-
version is introduced to enable the analysis of 3D images with
VGG19. In Section 2.3 we employ these features to formulate the
loss function and in Section 2.4 we elaborate on the optimization
procedure. Further details are provided in the Appendix A.3.

2.1. Feature extraction via transfer learning

The overarching goal of transfer learning is to improve learn-
ing a new task by transferring the knowledge obtained from
learning a related task [78]. In the context of this paper, knowl-
edge transfer refers to quantifying the statistical differences be-
tween two microstructures (task 1) using a deep learning model
that is trained to label a massive dataset of images (task 2). The
relevance between these two tasks is that the features that a pre-
trained model uses for labeling images3 in task 2 can also be used
to measure the statistical differences between two microstruc-
tures. To explicitly state what these features are and how they
are used for microstructure characterization, we first elaborate
on the pre-trained deep learning model employed in this work,
i.e., VGG19.

VGG19 is a deep convolutional neural network (CNN) trained
on the ImageNet dataset [79] for object classification. The ob-
jects in ImageNet are very diverse and include humans, animals,
buildings, vehicles, etc. under various imaging conditions such
as posing, angle, lightening, etc. As illustrated in Fig. 2, VGG19
consists of five blocks where each block has either two or four
convolution layers as well as one average pooling layer at the
end. Each convolution layer stores a set of filters (aka channels)
which encode specific features of the input image. Once an image
is used as input in VGG19, these filters are activated where each
filter produces a response map that indicates the locations on the
input image where the encoded feature by the filter is present,
see Fig. 3 for some examples.

It is well documented in the literature [73,74,80] that in a deep
CNN the first layer stores a collection of filters that act as various
edge detectors. As one goes deeper into the CNN (i.e., from left to
right in Fig. 2), the filters begin to detect more complex and less
visually interpretable features. Fig. 3 demonstrates this behavior
of deep CNNs when two different microstructures are fed into
VGG19: The response maps from the filters in the first layer of

3 These images include many objects (e.g., animals and humans) but exclude
microstructures.
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block 1 can effectively detect the edges and, in turn, segment
different parts of the image (e.g., the grains or inclusions can be
clearly detected using these filters). Understanding what filters
detect becomes increasingly complex as one goes deeper into the
model to the extent that interpreting the features that the filters
of block 5 detect is very difficult (see the last column in Fig. 3).

2.2. Model restructuring: Dimension to batch conversion

2D pre-trained deep CNNs such as VGG19 accept a 4D tensor of
size b×h×w×c as input where these letters denote, respectively,
batch size (the number of 2D images), image height and width
(in pixels), and number of channels. Since the most widely used
pre-trained 2D models are trained on RGB images, c = 3. If a 3D
microstructure image stored in a 4D tensor of size t × h × w × 3
(t denotes thickness) is used as an input to VGG19, the model
will produce features (i.e., response maps) from t images of size
h×w×3, i.e., VGG19 will operate as if it has received t independent
2D images. With such an independent treatment of 2D parallel
images along the thickness, 3D microstructural features cannot
be extracted.

To address this issue, our novel and yet simple idea is to
enforce VGG19 to produce a collection of dependent 2D feature
maps that approximate an underlying 3D feature map. Producing
dependent feature maps can be potentially achieved in many
ways. In this work, we accomplish this by adding a permuta-
tion operator to VGG19’s architecture (after the input and before
the first convolution layer in Fig. 2) such that it simultaneously
considers 2D cross-sections along thickness, height, and width to
stand for batch, i.e., the dimensions are converted to batch from
VGG19’s perspective, see Fig. 4. The advantages of this idea are
twofold:

• It can be applied to any pre-trained deep CNN without the
need to alter its internal architecture.

• It results in a set of 2D response maps that can be di-
rectly compared to the 2D response maps of the exemplar
(as opposed to 3D response maps that cannot be directly
compared to the exemplar’s 2D response maps).

Assuming VGG19 has a total of n filters across its five blocks,
this approach will produce a total of 3×s×n response maps for a

3D microstructure of size s× s× s voxels (note that the response
maps are all 2D images but of different size, see Figs. 3 and 5). In
Fig. 5 three response maps corresponding to the first filter of each
block’s first layer are illustrated. For visual clarity, the maps are
only obtained for the orthogonal planes overlaid on the input (for
the entire 3D input image, each filter produces three 3D response
maps). Similar behavior to Fig. 3 is observed across the blocks in
Fig. 5, i.e., the response maps become increasingly abstract and
difficult to interpret as one goes deeper into VGG19 (i.e., from
left to right in Fig. 5).

2.3. Loss function

Since our goal is to reconstruct a 3D microstructure that is
statistically equivalent to a 2D exemplar, the response maps
discussed in Section 2.2 cannot be directly used in the loss func-
tion, L (·). This is because L (·) should quantify the differences
between some statistical measures while the response maps are
deterministic features. In other words, one cannot necessarily
obtain a statistically equivalent 3D microstructure if the opti-
mization problem aims to match the response maps of the 3D
microstructure (see Fig. 5) with those of the exemplar (see top
row in Fig. 3).

Spatial statistics (e.g., void or grain spatial distribution) are
significantly important in microstructural analyses and must be
considered in reconstruction. Capturing these spatial statistics
requires finding the correlations among different response maps.
For instance, if two response maps characterize, respectively,
grain size and orientation, finding the correlation between these
two response maps would determine how grain size and orien-
tation are linked in the microstructure. This requirement moti-
vates employing the correlations between the response maps [81]
in L (·). To formally define these correlations and L (·), some
variables are first introduced.

Let b, lb, sb, and flb denote, respectively, block b in VGG19,
the number of layers in block b, size (in pixels) of the layers
in block b, and the number of filters within layer l in block b.
For example, in the first block: b = 1, lb = 2, flb = 64, and
sb = 200 for an input of size 200 × 200 (note that in VGG19
all the convolution layers within a block are of the same size and
have the same number of filters, see Fig. 2). Once the exemplar is
fed into VGG19, a total of flb response maps are generated by the

Fig. 3. (Color online) Sample response maps in VGG19 with 2D inputs: The response map of the first four filters of each block’s first layer are illustrated for two
input images. The pairs on the top of the figure correspond to (block ID, layer ID within the block). Each quadrant under each column indicates the response map
of one filter. The images have been resized to facilitate the visual comparison and the actual size can be inferred via the pixel counts at the bottom. For example,
each response map under column (1, 1) has a side length of 200 pixels. The colors in each response map indicate the features that the filter detects. To facilitate
comparison, the colors in the response maps have been scaled to [0, 255] range where 0 and 255 denote blue and red, respectively.
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Fig. 4. (Color online) Dimension to batch conversion: By adding the permutation operator, VGG19 treats each dimension as batch and produces 2D feature maps
along thickness, height, and width. The colors indicate how the permutation operator affects the input.

filters of layer l in block b. By vectorizing these 2D response maps,
one can store them in the matrix R lb of size flb × s2b where the
ith row stores the vectorized form of the ith response map. The
correlations between the response maps within layer l of block b
are calculated (up to a proportionality constant) via [81]:

G lb
= R lb

∗
(
R lb)T , (1)

where ∗ and T denote the matrix product and transpose opera-
tion, respectively. G lb is commonly known as the Gram matrix.

When a 3D image is fed into VGG19, each filter in block b
generates 3 × sb 2D response maps (as opposed to one 2D map
when a 2D input is used). The 3 × sb number is the result of
the permutation operation discussed in Section 2.2, see Fig. 5.
Hence, each layer in block b will have 3 × sb Gram matrices
each of size flb × flb. Denoting these Gram matrices by Cdlb for
d = 1, 2, . . . , 3 × sb the loss function can be written as:

L (x) =

5∑
b=1

lb∑
l=1

3×sb∑
d=1

∑
ij

(
Cdlb
ij − Glb

ij

)2
, (2)

where x denotes the RGB triplets for all the voxels of the 3D mi-
crostructure. For example, x =

[
xri , x

g
i , x

b
i

]T , i = 1, . . . , 200 when
reconstructing a 3D colorful microstructure of size 200 × 200 ×

200 voxels.
The loss function in Eq. (2) is known to produce high frequency

signals (i.e., noise) upon reconstruction. To reduce the noise, a
regularization term known as the total variation loss [82] is added
to the loss function:

L (x) =

5∑
b=1

lb∑
l=1

3×sb∑
d=1

∑
ij

(
Cdlb
ij − Glb

ij

)2
+ λp (x) , (3)

where λ is the regularization parameter that can be estimated
very efficiently as detailed in Appendix A.3. λ = 1012 is used for
all the examples in Section 3.

We now discuss three important aspects of L (x) in Eq. (3).
Firstly, the grammatrices are obtained up to some proportionality
constants. These constants are excluded from Eq. (3) as their
presence would merely change the estimate on λ. Secondly, the
Gram matrices of the exemplar do not change under the sum-
mation over d. Since this summation essentially makes VGG19 to

look at 2D cross-sections of the 3D microstructure from different
angles, the invariance of exemplar’s Gram matrices under this
summation implies that any 2D cross-section taken from the
3D microstructure inherits its statistics from the exemplar. Note
that if a 3D microstructure cannot be adequately characterized
with a single 2D exemplar (e.g., an anisotropic microstructure),
Eq. (3) must be updated to use more than one 2D exemplar in
reconstruction. We elaborate more on dealing with anisotropy
in Section 3.4. Lastly, the extracted features in each layer are
assumed to be equally important since there are no weights
inside the summation over l (the weighted summation would
have been

∑lb
l=1 wl

∑3×sb
d=1 . . .). This choice reflects the equal im-

portance of all the features in the exemplar. Noting that the
filters in the deep layers in VGG19 (e.g., layers in block 5) capture
longer range correlations than the filters in the proceeding layers
(e.g., layers in block 1), an unweighted sum also implies that
short- and long-range correlations are equally important. We
believe these choices increase the generality of our method and
make it applicable to various microstructures as illustrated in
Section 3.

2.4. Optimization

As the flowchart in Fig. 1 illustrates, the goal of optimization is
to iteratively adjust a randomly generated 3D image such that it
becomes statistically equivalent to the exemplar. This adjustment
is achieved by minimizing L (x):

x̂ = argmin
x

L (x) , (4a)

s.t.: 0 ≤ xi ≤ 255, i ∈
[
1, . . . , 3 × z3

]
, (4b)

where z is the side-length of the 3D image and x̂ is the desired
3D microstructure whose features (as defined in the previous
section) match those of the exemplar. The constraints in Eq. (4b)
assume that each voxel in the 3D image requires an RGB triplet.
For grayscale and binary images the constraints would be, respec-
tively, 0 ≤ xi ≤ 255 and xi = 0 or 1 where i ∈

[
1, . . . , z3

]
in both

cases.
The optimization in Eq. (5) can be solved in different ways.

However, a gradient-based technique is always used due to the
extremely high-dimensionality of the problem and, more impor-
tantly, because the gradient of L (x) with respect to x can be

Fig. 5. (Color online) Sample response maps in VGG19 with a 3D input: The response maps of the first filter of each block’s first layer are illustrated for a 3D input.
The triplets on the top of the figure correspond to block ID, layer ID within the block, and filter ID within the layer. The numbers at the bottom indicate the side
length in voxels. For clarity, the response maps are only plotted for the orthogonal planes overlaid on the input image. For the entire image, each filter generates
3 × 200 2D response maps in total (three of which are shown).
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analytically derived and implemented via the standard backprop-
agation algorithm [81,83].

3. Results and discussions

In this section, the developed method is used to reconstruct
eight 3D microstructures that belong to different microstructures
(e.g., porous, composite, etc.) and each has unique features that
the approach is able to characterize and reconstruct quite well.
The example (Ex) sets are categorized based on the image for-
mat, i.e., grayscale, binary, and RGB. The method is developed
in Python and leverages TensorFlow [84] for transfer learning
and the L-BFGS-B algorithm [85] for optimization where the
termination criterion and λ are set to 1000 iterations and 1012,
respectively. All computations are carried out on GPU (NVIDIA R⃝

Quadro RTXTM 8000).
The two-point correlation, lineal-path, and two-point cluster

correlation functions are used to validate the statistical equiv-
alency between the reconstructed microstructures and the cor-
responding exemplars in Ex1 through Ex6 (see Appendix for
implementation details). For the polycrystalline microstructures
(Ex7 and Ex8), the distribution of the normalized grain size is
employed to compare the reconstructed samples with the exem-
plars. These measures are chosen as validation metrics because
they are linked to material properties [13,86,87] and ubiquitously
employed in the literature [41,59,61–63,75–77,88–92]. In all
examples, the side length of the exemplars and the reconstructed
microstructures is 200 pixels/voxels. Details on how to apply the
optimization problem in Eq. (5) directly to grayscale and binary
images are provided.

3.1. Example set 1: Grayscale images

Grayscale images are ubiquitous in materials science as many
devices such as scanning electron microscope and transmis-
sion electron microscope produce grayscale images. As reviewed
in Section 1, most reconstruction methods are inapplicable to
grayscale images and threshold the exemplars to limit their pixel
brightness values to a few numbers (e.g., 0/1 or 0/255 for two-
phase microstructures). Using three examples, we illustrate that
our approach is directly applicable to various grayscale images,
see Fig. 6.

The microstructure in Ex1 belongs to steel where the dark
regions indicate secondary phase which has various shapes and
sizes. The size and spatial distribution of Pearlites are highly
important in steel and are directly linked to manufacturing pro-
cesses and properties. In Ex2, an electron micrograph of tempered
martensite is investigated where the small particles and the ma-
trix indicate cementite and α-ferrite phases, respectively. Ex3 is
on an aluminum alloy prepared by high pressure die casting [93].
In all these examples, the size, shape, and spatial distribution
of the secondary phase (pores, inclusions, defects, etc.) are of
particular interest.

The reconstruction results are demonstrated in the second row
of Fig. 6 and indicate that the developed method can characterize
microstructural features of various nature. For example, the mi-
crostructure in Ex1 mostly has randomly oriented large secondary
phase while the microstructure in Ex3 has only a few elliptical
voids. The micrograph of the tempered martensite in Ex2 has
even more interesting features. Firstly, the elliptical particles have
various aspect ratios and sizes. Secondly, there seems to be a

Fig. 6. Examples on grayscale images: (a) The 2D exemplars of size 200 × 200 pixels, and (b) the 3D reconstructed microstructures of size 200 × 200 × 200 voxels.
Part of the reconstructed images is removed to reveal the interior.
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Table 1
Average errors and reconstruction time.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6

Error in S2 (r) 3.21 × 10−3 1.06 × 10−3 3.21 × 10−4 2.30 × 10−5 1.69 × 10−3 2.11 × 10−3

Error in L (r) 1.59 × 10−3 1.55 × 10−3 2.21 × 10−4 6.93 × 10−5 3.91 × 10−4 1.28 × 10−3

Error in C2 (r) 3.02 × 10−3 1.65 × 10−3 3.17 × 10−4 7.64 × 10−5 1.82 × 10−3 3.62 × 10−3

Time 110.1 104.9 113.2 104.2 105.2 107.9

The reconstructed microstructures are compared to the exemplars by measuring the root mean squared error (RMSE) in two-point correlation,
S2 (r), lineal-path, L (r), and two-point cluster correlation, C2 (r), functions. The reconstruction time is in minutes. In Ex6, calculations are
done along the anisotropy direction. The data are averaged over ten simulations. The variations are small and hence no reported.

correlation between the orientation of the particles’ major axes
and their spatial location. For example, the particles on the top
left corner are aligned horizontally while those close to the right
edge (in the middle of the image) are aligned vertically. Such
features render the microstructure in Ex2 non-stationary. These
interesting features in Ex1 through Ex3 are all preserved quite
well in the reconstructed samples.

Quantitative comparisons based on S2 (r), L (r), and C2 (r) are
summarized in Table 1. Each number in the first row indicates the
root mean squared error (RMSE) between the S2 (r) of the exem-
plar and the S2 (r) of the corresponding reconstructed microstruc-
ture. Given the small value of RMSEs in S2 (r), L (r), and C2 (r) we
can conclude that the statistical equivalency is preserved quite
well.

Table 1 also includes the computational costs (last row), in-
dicating that each reconstruction takes roughly 110 min. The
primary reasons behind such consistency in costs are the im-
posed optimization settings on termination criterion (i.e., 1000
iterations) and initialization (optimization starts by a random
image as per the flowchart in Fig. 1). The small differences in

reconstruction costs are mainly due to the adaptive scheme that
the L-BFGS-B algorithm employs to update the variable values
while imposing the constraints in Eq. (5).

Lastly, it is noted that a 2D grayscale image requires a one-
channel representation, i.e., a total of s3 brightness values need
to be estimated for reconstructing a microstructure of size s ×

s × s voxels (one value for each voxel). However, we use a
three-channel (i.e., RGB) representation even for grayscale images
where the brightness values are the same across the channels in
the exemplar (e.g., a pixel brightness value of 2.34 in a grayscale
image is represented as [2.34, 2.34, 2.34] in the corresponding
RGB image). Although this modeling choice triples the number
of optimization variables, it is adopted primarily because VGG19
is trained on RGB images and does not accept grayscale images.
It is highlighted that this additional constraint is not added to
Eq. (5), that is, the algorithm is expected to reconstruct a 3D
microstructure where the RGB values in each voxel are the same.

Fig. 7. Examples on binary images: (a) The 2D exemplars of size 200 × 200 pixels, and (b) the 3D reconstructed microstructures of size 200 × 200 × 200 voxels.
Part of the reconstructed images is removed to reveal the interior. The red and yellow colors distinguish the matrix and the secondary phase.
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Fig. 8. (Color online) Examples on polycrystalline images: (a) The 2D exemplars, (b) the 3D reconstructed microstructures, and (c) the cumulative distribution function
(CDF) vs. normalized grain size. Part of the reconstructed images in (b) is removed to reveal the interior.

In the author’s experience, such an implementation can consis-
tently satisfy the equality constraint across the RGB channels
even though the constraint is not used in optimization.4

3.2. Example set 2: Binary images

In grayscale or RGB images, pixel brightness values fall in the
continuous region [0, 255]. In two-phase microstructures, how-
ever, pixels only take two integers (e.g., 0 and 255) which results
in sharp gradient changes during optimization. The examples
of this subsection demonstrate the robustness of the developed
approach to these sharp changes. As illustrated in Fig. 7, the
microstructures correspond to drastically different microstruc-
tures. Ex4(a) belongs to a dielectric material where the secondary
phase represents silicon and controls the dielectric behavior of
the system. The area fraction of silicon in Ex4(a) is roughly 1%
which makes it very difficult to learn its statistical features. Ex5(a)
is the microstructure of ceramics and contains many pores of
random shape, size, orientation, and spatial distribution. Ex6(a)
demonstrates an anisotropic microstructure where the major axis
of the inclusions is aligned diagonally.

The reconstructed microstructures are shown in the second
row of Fig. 7, indicating that our method can characterize and
reconstruct a wide range of binary images quite well. It is worth
noting that Ex4(a) is a nonstationary microstructure so recon-
struction methods that rely on stationarity assumptions (e.g., ran-
dom field-based approaches) are inapplicable to it. Additionally,
we highlight that the anisotropy direction in Ex6(a) is along none
of the principal directions (i.e., height, width, and thickness) along
which the response maps are obtained via VGG19. We believe
preservation of these features indicates the generality of our
approach.

4 Adding this constraint causes convergence issues and increases the
computation times.

The reconstructed microstructures are quantitatively com-
pared to the exemplars by calculating the RMSEs in S2 (r), L (r),
and C2 (r). The results are summarized in Table 1 and indicate
that the errors are negligible (in Ex6, these functions are calcu-
lated along the anisotropy direction). The computational costs are
also provided in Table 1 which are very close to the previous
examples.

We highlight that in our examples we treat binary images akin
to grayscale images, i.e., we use a three-channel representation
where the brightness values (upon optimization) are the same
across the RGB channels. However, the brightness values must be
integer (as opposed to real numbers in grayscale images) so after
optimization, the microstructure is thresholded. The threshold
value is not critically important because (assuming the phases
are represented with 0 and 255) most brightness values are very
close to either 0 or 255. In all the examples in this subsection, a
threshold value of 125 is used.

3.3. Example set 3: Polycrystalline images

The last set of examples is on polycrystalline microstructures
that contain grains of various shapes, sizes, and orientations.
In Fig. 8, Ex7(a) illustrates a 2D microstructure generated via
the phase field method that models grain growth [40]. Ex8(a) is
obtained by electron backscattered diffraction and demonstrates
the microstructure of a polycrystalline material where the colors
distinguish different grains and represent unique crystallographic
orientations.

The reconstruction results are shown in the second column of
Fig. 8 and demonstrate that the essential features of both exem-
plars are reproduced in the corresponding reconstructed images.
Given the importance of grain size, the cumulative distribution
function (CDF) of the normalized grain size is used to quantita-
tively compare the exemplars and the reconstruction results. As
shown in the third column of Fig. 8, the CDF of the normalized
grain size is preserved quite well. The grain sizes are obtained by
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Fig. 9. (Color online) Evolution of the initial 3D image during optimization in Ex8: As the microstructures indicate, the optimization converges with less than 1000
iterations.

counting the number of pixels/voxels within a grain and then the
largest grain size (either in terms of area or volume) is used to
normalize them.

The computational costs are similar to those of the previous
examples: the microstructures in Ex7 and Ex8 are reconstructed
in 101.4 and 100.5 min, respectively. The slight reduction in the
computational costs is primarily because the gradients of the loss
function in Eq. (3) are larger (hence a faster convergence) with an
RGB image where the brightness values are different across the
channels.

3.4. Discussions

In this subsection, some detailed discussions on convergence
and computational costs are provided. Ex8 is used throughout but
the discussions are applicable to all the examples.

Fig. 9. illustrates the evolution of the initial random 3D image
used in Ex8. As it can be observed, log 10 (L (x)) decreases quickly
at first but after about 500 iterations the convergence rate drops
significantly. This trend is due to the fact that a gradient-based
optimization technique is used in the minimization where the
gradient norm is large at the early stages of the optimization. A
large gradient norm enables L-BFGS-B to take a large step in up-
dating the variables (i.e., x) which, in turn, reduces L (x) quickly.
As the minimization progresses, this norm reduces and so do the
changes in the variables as well as the objective function. Note
that Fig. 9 is in log scale to better demonstrate the convergence
rate.

Fig. 10. Effect of image size on reconstruction cost: Time is in minutes and the
numbers on the horizontal axis determine the voxel counts. Reconstruction time
is reported after 1000 optimization iterations. Each number on the plot is the
average value across 5 simulations. The variations are very small and hence not
reported.

Fig. 9. also shows that the termination criterion (1000 iter-
ations) used in all the examples is more than sufficient. The
advantage of this criterion is that it provides a reliable means to
schedule simulations on a server. In particular, the computation
time per iteration is almost constant which simplifies resource
allocation and scheduling. We highlight that since the optimiza-
tion problem is a bounded one (see Eq. (5)), the simulation costs
of the first few iterations are slightly higher than the rest of the
iterations: The random initialization coupled with the large gra-
dient norm may update some of the variables such that they fall
outside of the feasible [0, 255] range. Enforcing these constraints
increases the computational costs.

The number of iterations as well as the image size directly
influence the computational costs. Fig. 10 illustrates the effect
of the microstructure size on the costs and indicates that there
is almost a linear relation between the number of voxels and
the reconstruction time. We believe these costs are acceptable
given the robustness (in terms of reproducing the 2D exemplar’s
features in the 3D reconstructed microstructure) and flexibility
(i.e., applicability to various microstructures) of our approach. We
recommend some future works to decrease the reconstruction
costs in Section 4.

The permutation operator in Fig. 4 is limited to three orthog-
onal directions which means that the phase value5 of a voxel is
determined by comparing three orthogonal planes centered at
that voxel with the given 2D exemplar. This comparison mech-
anism is schematically illustrated in Fig. 11 where the phase
value of voxel V1 is predicted by comparing the three orthogonal
blue planes to the given 2D exemplar (note that each plane is
partly shown for clarity). Even though we are only using three
orthogonal planes, Fig. 7(c) indicates that anisotropy is quite
well preserved in the non-orthogonal directions. We justify this
observation by noting that in each iteration of optimization, the
phase values of all the voxels are updated simultaneously (as
opposed to one voxel at a time employed in [39,59,61,94]). In
each update, the relation between any two voxels that do not
lie in each other’s orthogonal planes is captured through their
shared neighboring voxels. For instance, the relation between V1
and V2 in Fig. 11 is captured via the voxels that belong to both
the orthogonal planes centered at V1 and the orthogonal planes
centered at V2 (the latter planes are not shown in Fig. 11).

5 The RGB triplet for a colorful image.
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Fig. 11. (Color online) Preserving anisotropy: The phase value of voxel V1
is predicted by comparing the three orthogonal blue planes to the given 2D
exemplar (part of each plane is shown for clarity). The spatial relation between
V1 and V5 is characterized through their neighboring voxels which belong to
both the orthogonal planes centered at V1 and the orthogonal planes centered
at V2. Some of these shared voxels are indicated by red lines.

By slightly modifying Eq. (3) we can reconstruct a 3D mi-
crostructure by fusing multiple 2D exemplars. For instance, if a
3D cubic sample is imaged on its three orthogonal plans (i.e.,
XY , YZ , and XZ planes), we fuse the resulting 2D exemplars
accordingly to reconstruct a 3D microstructure. In particular, we
replace the summation over dimensions (i.e., d in Eq. (3)) with
three summations where each one is over one exemplar (one
summation for XY plane, and so on):

L (x) =

5∑
b=1

lb∑
l=1

3∑
p=1

sb∑
d=1

∑
ij

(
Cdplb
ij − Gplb

ij

)2
+ λp (x) , (5)

Application of Eq. (5) is demonstrated in Fig. 12 where we
use three 2D exemplars from the microstructure in Fig. 12(a)
to reconstruct the sample in Fig. 12(b). By comparing these two
images in terms of their 2D cross sections as well as the CDF of
the normalized grain sizes, we can conclude that the statistical
equivalency is preserved quite well.

Similar to many other microstructure reconstruction tech-
niques, our method can generate multiple 3D images that are,
while visually different, statistically equivalent to a 2D exem-
plar, see Fig. 13. The 3D microstructures represented throughout
Section 3 are representative results, that is, multiple 3D recon-
structions of a 2D exemplar achieved very statistics. The reported
errors and tun times in Table 1 are averaged over ten simulations.

4. Conclusion and future works

Computational analysis and design of many materials rely on
having a 3D sample that embodies the salient microstructural
features of the material under study. We introduce a generic,
robust, and efficient approach for reconstructing a 3D microstruc-
ture using a single 2D exemplar. In our approach, reconstruction
is cast as an optimization problem where a random 3D image
is iteratively refined to match its statistical features to those of
the 2D exemplar. We obtain these features for both the exemplar
and the to-be-built 3D microstructure via VGG19 which is an
extremely powerful pre-trained deep learning model.

VGG19 can only analyze 2D images with RGB channels. To en-
able the use of 3D images with VGG19, we augment its structure
with a permutation operator located before the first convolution

Fig. 12. (Color online) Reconstructing a 3D anisotropic sample via multiple 2D exemplars: (a) Original 3D sample. (b) Reconstructed sample. Three exemplars (along
XY , XZ , and YZ planes) are chosen from (a) to build the microstructure in (b). (c) The cumulative distribution function (CDF) vs. normalized grain size for the original
and reconstructed microstructures. (d) And (e) 2D sections from, respectively, the original and reconstructed microstructures. Part of the images in (a) and (b) is
removed to reveal the interior.
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Fig. 13. Reconstruction of multiple statistically equivalent microstructures: All 3D images are generated using the 2D exemplar.

layer. Upon this addition, VGG19 generates correlated 2D features
across the 3D microstructure’s height, width, and thickness that
approximate a 3D feature space. The primary advantages of our
simple strategy are threefold. Firstly, it produces 2D features that
can be directly compared to the exemplar’s 2D features. Secondly,
it is not intrusive in that there is no need to re-train VGG19 or
alter its internal structure in any way. Thirdly, it is extremely
straightforward to implement, adds minimal computational over-
head, and is applicable to other deep learning models such as
Inception and Xception.

VGG19 produces deterministic features in the form of some 2D
response maps. To convert these features to statistical measures
and ensure solution existence during optimization, we calculate
the Gram matrices associated with these response maps and
employ them in formulating the objective function. Since the gra-
dient of the objective function is readily available with standard
backpropagation algorithms, the L-BFGS-B method is employed in
optimization.

The applications of our method are illustrated with nine ex-
amples on different microstructures (alloy, composite, porous,
and polycrystalline) and image formats (grayscale, binary, and
RGB). The results show that the statistical equivalency is achieved
between the reconstructed samples and the corresponding ex-
emplars. We believe these appealing results are primarily due
to VGG19’s power in detecting features of various forms as well
as careful formulation of the objective function that effectively
models long- and short-range correlations.

Our approach assumes that any 2D cross-section of the 3D
reconstructed sample resembles the 2D exemplar, i.e., its fea-
tures match (in a statistical sense) to those of the exemplar. As
our examples demonstrate, these features can involve rare, non-
stationary, or highly correlated statistics. The reconstruction time
of our approach primarily depends on size of the microstructure
and the number of optimization iterations. Calculating the cost
function in Eq. (3) and its gradient with respect to x is O

(
N5

)
which indicates that the computational complexity of our method
is (while similar to texture synthesis) at least an order of magni-
tude larger than phase recovery. We believe that the generality
and accuracy of our approach justify these higher costs. All the
examples in Section 3 are cubes of size 200 × 200 × 200 voxels
which is sufficiently large for practical applications in, e.g., finite
element analysis. The reconstruction time of a cube of size 2003

voxels is approximately 100 min and decreases almost linearly as
the number of voxels is reduced (e.g., the cost is roughly 1

8 ×100
when reconstructing a cube of size

( 1
2 × 200

)3
). Our analyses and

examples demonstrate that the reconstruction cost is reliably pre-
dictable given the number of voxels and optimization iterations.
This property helps in resource allocation and monitoring the
simulations.

We control the convergence by limiting the number of op-
timization iterations to 1000. As shown in Section 3.4, this is
an overkill and a more efficient termination criterion is needed

which can also reduce the reconstruction costs. Other means to
decrease the costs include choosing an initial 3D image whose
features are close to those of the exemplar (instead of a ran-
dom initial image) and using multiple GPUs in optimization. A
multi-resolution reconstruction scheme based on Gaussian pyra-
mids [95] can provide a systematic procedure for implementing
these ideas and is the topic of our future work.

The regularization parameter, λ, is the only calibration param-
eter of our approach. λ directly affects the reconstruction results:
a too small λ introduces noise while a very large λ prevents the
optimization task from introducing the exemplar’s features into
the reconstructed microstructure. We propose a very efficient and
intuitive way to estimate λ by reconstructing a 2D image (which
is very fast) for different values of λ and then choosing the best
value by visual inspection. In the author’s experience, the opti-
mum estimate of λ depends primarily on the deep learning model
and how it is used: All our experiments are carried out via VGG19
where all its layers are used for feature extraction (these choices
result in λ = 1012). If another model (or part of VGG19) is used, a
different value of λ maybe needed. Regardless of the model and
how it is used, our simple approach can be used to estimate λ.
A quantitative and reliable approach for estimating λ (either a
constant value or one that varies during the optimization) can
certainly benefit our approach.

We use the entire convolution layers of VGG19. However, one
can choose certain layers (or add weights to them) while building
the loss function. This approach is potentially useful if the user
is primarily interested in some microstructural features in the
exemplar but not all. While such an implementation may pro-
vide computational savings and reproduce certain features very
efficiently, directly linking individual layers with microstructural
features requires some trial and error and will be pursued in our
future works.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix

A.1. The two-point correlation function

Let X denote a binary microstructure image on a square lattice.
The pixel (voxel in 3D) states in X can be identified by:

X kl =

{
1 if kl ∈ phase 1
0 otherwise,

(6a)

where kl is the pixel index and determines its location within the
image.
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Fig. 14. (Color online) Effect of regularization on reconstruction: A 2D microstructure is reconstructed for each value of λ. The optimization is terminated once the
loss function is evaluated 1500 times. The evolution of the microstructure is illustrated every 300 iterations. Reconstruction cost in each case is less than three
minutes. The side length of all the images is 200 pixels.

Denoting this location by the vector r , the two-point
(auto)correlation function [11,12,15] for phase i is defined as:

S i2 (r1, r2) =
⟨
X r1 ,X r2

⟩
, (6b)

where ⟨·⟩ denotes the expectation operator. If X is stationary and
isotropic, S i2 will only depend on the distance between the two
points:

S i2 (r1, r2) = S i2 (∆r12) = S i2 (|∆r12|) = S i2 (r) , (6c)

Hence, for a stationary and isotropic material, S i2 (r) has a
simplified formulation and can be efficiently calculated via fast
Fourier transform (FFT) [44,96,97], Monte Carlo [39], orthogonal

sampling [21,22], or lattice-point algorithm [98]. In this paper,
FFT is used in calculations and the superscript i is dropped as
S i2 (r) is obtained only for the secondary phase whose spatial
distributions are of interest.

A.2. The lineal-path function

The lineal-path function [16], denoted by L(r) for an isotropic
and stationary microstructure, quantifies the amount of clustered-
ness along straight lines within an image. Li (r) is a two-point
quantity and measures the probability of throwing a line on the
microstructure image and having the entire line land on phase i.
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L(r) can be calculated either with a Monte Carlo approach [39] or
by building the histogram of chords [38]. In this paper, the Monte
Carlo approach is used.

A.3. Effect of regularization

The regularization parameter, λ, noticeably effects the recon-
struction results and should be estimated carefully. Given the
relatively high computation cost of reconstructing a large 3D
microstructure (see the bottom row Table 1) we recommend to
estimate λ by reconstructing a 2D microstructure for various val-
ues of λ to find the appropriate value, see Fig. 14. The procedures
for such a reconstruction are similar to those outlined in Section 2
except that there is no need for dimension to batch conversion
which, in turn, eliminates the summation over d in Eq. (3). As
Fig. 14 illustrates, the reconstructed microstructure is noisy when
λ = 0 (i.e., no regularization). As λ increases, the noise reduces
and with λ = 1012 the noise seems to be minimized. Further
increasing λ adversely affects the results where first the cor-
relations are lost (e.g., grain size) and then the colors (which
represent grain orientation).

In the author’s experience, the appropriate value of λ mostly
depends on the employed deep learning model (VGG19 in this
paper) rather than the microstructure. As noted in Section 3,
λ = 1012 is used throughout this paper. Note that, if a part of
VGG19 (e.g., only blocks 1 and 2) is used in reconstruction, the
same part should be used to estimate λ.

Another method for estimating λ is to reconstruct a small 3D
microstructure for different values of λ and then choose the most
appropriate value. Given the success of the approach described
above, this estimation method is not pursued in this work.
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