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Summary

The need for computational characterization and reconstruc-
tion of volumetric maps of stochastic microstructures for
understanding the role of material structure in the processing–
structure–property chain has been highlighted in the litera-
ture. Recently, a promising characterization and reconstruc-
tion approach has been developed where the essential idea is to
convert the digitized microstructure image into an appropriate
training dataset to learn the stochastic nature of the morphol-
ogy by fitting a supervised learning model to the dataset. This
compact model can subsequently be used to efficiently recon-
struct as many statistically equivalent microstructure samples
as desired. The goal of this paper is to build upon the devel-
oped approach in three major directions by: (1) extending the
approach to characterize 3D stochastic microstructures and
efficiently reconstruct 3D samples, (2) improving the perfor-
mance of the approach by incorporating user-defined predic-
tors into the supervised learning model, and (3) addressing po-
tential computational issues by introducing a reduced model
which can perform as effectively as the full model. We test
the extended approach on three examples and show that the
spatial dependencies, as evaluated via various measures, are
well preserved in the reconstructed samples.

Introduction

Recent advances in imaging techniques (Edelman & Warach,
1993; Salvo et al., 2003; Kastner et al., 2012) have enabled
the collection of high resolution three-dimensional (3D) maps
of microstructures at various scales. The need for computa-
tional characterization and reconstruction (C&R) of the col-
lected data for investigating the role of material structure in
the processing–structure–property chain is well highlighted
in the literature (Olson, 1997, 2000; Torquato, 2002a,b.
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2010; Fullwood et al., 2010; Niezgoda et al., 2010, 2011;
Ward, 2012; Breneman et al., 2013; Xu et al., 2013; Baghgar
et al., 2014; Qomi et al., 2014, 2015; Bauchy et al., 2014;
Ballani & Stoyan, 2015; Zhang et al., 2015). Given the digi-
tized image of a microstructure sample, C&R provide the means
for building a virtual ensemble of representative volume el-
ements or statistical volume elements that can be used for
material property prediction (Greene et al., 2011). The ac-
curacy of the estimated properties hinges on the statistical
equivalency between the ensemble members and the original
microstructure.1

To build a high fidelity ensemble whose elements are in-
deed statistically equivalent to the original microstructure,
one needs to make sure (1) the inherent stochasticity of the
original sample is identified and accurately characterized (or,
in machine learning parlance, learned), and (2) the learned
stochasticity is well preserved when generating (reconstruct-
ing) virtual samples. Motivated by these challenges, a handful
of methods have previously been developed for microstructure
C&R. Here, we briefly discuss methods that can be applied to
3D microstructure C&R and refer the reader to the references
for more details.

Optimization-based approaches (and its variants) are one
of the most popular and well-established methods in this
area. Works that fall into this category iteratively adjust
(i.e. optimize) the reconstructed image so as to minimize an
appropriately defined energy (cost) function that measures
the statistical differences between the original image and the
reconstructed one. A subset of these approaches, often known
as stochastic reconstruction (Yeong & Torquato, 1998a,b),
characterize the material structure via various correlation
functions (such as two-point and two-point cluster, see Debye
& Bueche, 1949; Debye et al., 1957; Beran, 1965; Corson,
1974a,b; Torquato & Stell, 1982; Berryman, 1985; Berryman
& Blair, 1986; Rintoul & Torquato, 1997; Yeong & Torquato,
1998a,b; Torquato, 2002a,b, 2006, 2010; Jiao et al., 2007,

1 Throughout the paper we use the terms ‘image’ and ‘microstructure’ interchange-

ably, because the samples are represented as images.

C© 2016 The Authors
Journal of Microscopy C© 2016 Royal Microscopical Society



2 R . B O S T A N A B A D E T A L .

2008, 2009; Li et al., 2012; Liu et al., 2013) and the difference
between the correlation functions of the original and the
reconstructed image is the basis for the cost function. Because
most microstructures cannot be characterized solely by one
specific correlation function, usually multiple correlation
functions are incorporated into the cost function. Stochastic
reconstruction methods are applicable to 3D microstructures
and, with reasonable assumptions (i.e. isotropy and homo-
geneity), can also extrapolate two-dimensional (2D) images
to reconstruct 3D microstructures. Recently, Zachary &
Torquato (2011) and Guo et al. (2014) integrated the stochas-
tic reconstruction method with dilation/erosion techniques
in image analysis to better match the clusteredness by only
integrating the two-point correlation function into the afore-
mentioned cost function. Although several improvements
in the pixel-/voxel-swapping heuristics have been developed
(see Tang et al., 2009; March et al., 2012; Piasecki & Olchawa,
2012; Chen et al., 2014; Pant et al., 2014), the optimiza-
tion is still computationally prohibitive for reconstructing
large/anisotropic images. Methods based on phase recovery
(see, e.g. Fullwood et al., 2008a,b) can also be categorized as
optimization-based, as they iteratively optimize a sample to
match its full vector two-point correlation function (i.e. with
phase information) to a target full vector two-point correlation
function. Because the phase information is preserved, char-
acterization of anisotropic and polycrystalline materials is to
some extent possible. Phase recovery methods reconstruct
microstructures with periodic boundaries because they use a
fast Fourier transform, and the reconstruction is deterministic
(i.e. only one sample can be reconstructed with given target
statistics and if the target full vector two-point correlation
function completely characterizes the original structure, the
original structure will be recovered upon reconstruction).

In another set of optimization approaches, various physi-
cal descriptors (e.g. average particle size or grain boundaries)
are used to characterize the original microstructure, and the
optimization process aims to match the characteristics of the
descriptors in the reconstructed image to the corresponding
ones in the original image (Karasek & Sumita, 1996; Tewari
& Gokhale, 2004; Rollett et al., 2007; Wilson et al., 2010;
Holotescu & Stoian, 2011; Sintay & Rollett, 2012; Xu et al.,
2014). The choice of physical descriptors depends on the ma-
terial system (e.g. polycrystalline, fibre composite, . . . ) and
properties of interest. The use of physical descriptors enables
sensible characterization of topological features, and hence
this approach is desirable for design (see, e.g. Breneman et al.,
2013). However, image analysis is required to extract the
characteristics of the descriptors from the original image, and
one needs to have a priori knowledge of the appropriate de-
scriptors. For example, because transport processes in partic-
ulate heterogeneous systems and intergranular corrosion in
polycrystalline materials are sensitive to, respectively, nearest
neighbour distances between particles (Torquato, 2002b) and
grain boundaries (Rollett et al., 2007), one needs to match the

distributional characteristics (such as the mean and variance)
of these descriptors in the original and reconstructed samples.

Poisson (Grigoriu, 2003; Rahman, 2008) or Gaussian
(Quiblier, 1984; Levitz, 1998; Talukdar et al., 2002; Tang
et al., 2008; Jiang et al., 2013) random fields have also been
previously used to model stochastic (esp. porous) materials by
level-cutting a random field. These methods rely on correlation
functions because the model is fitted by matching its correla-
tion functions to those of the original image. The methodol-
ogy works in 2D, 3D and 2D to 3D (i.e. characterization in 2D
and reconstruction in 3D) but is usually restricted to bi-phase
isotropic structures based on only two-point correlation func-
tion and hence lacks high accuracy. In Jiang et al. (2013), Tang
et al. (2008) and Talukdar et al. (2002), the authors optimized
a random field-based reconstructed image (e.g. via simulated
annealing) to reduce the differences between correlation func-
tions. Although this integration improves the accuracy (in
matching correlation functions), it is still subject to the above
limitations (e.g. restriction to bi-phase isotropic structures).
Some of these methods (see Rahman, 2008) are applicable to
statistically inhomogeneous structures and can be extended
to consider higher-order point correlation functions but are
limited to specific material systems (e.g. penetrable ellipsoidal
particles) and involve calibration and Mote Carlo sampling
to, respectively, match the moments of the random field to
the target statistics, and generate realizations from the filtered
Poisson field.

Texture2 synthesis methods (Wei & Levoy, 2000; Efros &
Leung, 1999) have also been applied to material C&R. In this
approach, the microstructure is assumed to behave as a sta-
tionary Markov random field (MRF; see “Review of the 2D
supervised learning approach for stochastic microstructure
C&R” section), the characterization is implicit and each image
is reconstructed pixel-by-pixel (voxel in 3D) in a specific or-
der (e.g. raster scan). Each pixel’s value in the reconstructed
image is found by searching for the pixel (or set of pixels) in
the original image whose neighbouring pixels best match the
neighbours of the pixel to be generated. The methods differ in
their choice of neighbourhood geometry, definition of similar-
ity and search method (see, e.g. Sundararaghavan, 2014; Liu
& Shapiro, 2015). Texture synthesis-based methods are appli-
cable to various 2D/3D material systems but involve no fitted
model to characterize the microstructure, and reconstruction
is done by exhaustively searching for similar neighbourhoods
in the original image. The exhaustive search makes these
methods computationally prohibitive for microstructures with
long-range correlations or high resolution samples where a
relatively large neighbourhood is required in the search pro-
cess. We note that some texture synthesis methods (Efros &
Freeman, 2001) use patches instead of pixels and hence are

2 In materials science, the preferred crystallographic orientation in a polycrystalline

structure is sometimes referred to as a texture. In the cited works, however, texture

is defined as a realization of a stationary random field.
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computationally more efficient (see Tahmasebi et al. (2012)
and Tahmasebi & Sahimi (2013) for similar works in geo-
statistics).

Works similar to texture synthesis also exist in geostatistics
literature (Guardiano & Srivastava, 1993; Caers & Journel,
1998; Elfeki & Dekking, 2001; Strebelle, 2002; Wu et al.,
2004; Okabe & Blunt, 2005; Hajizadeh et al., 2011) where
C&R of porosity in geological structures (such as sandstone)
is of particular interest. The methodology used in these works
is based on multiple-point statistics, characterizing the struc-
ture by calculating and storing the conditional probabilities of
finding a specific phase at a pixel, given the phases of a partic-
ular configuration of neighbouring pixels. The multiple-point
statistics approach implicitly characterizes the microstructure
by exhaustive enumeration of all possible phase combinations
for all possible neighbourhood configurations that have oc-
curred in the training image. Reconstruction is accomplished
pixel-by-pixel, also similar to texture synthesis, by search-
ing for the training neighbourhood that best matches that
of the pixel being reconstructed and then subsequently sam-
pling from the conditional probability for that neighbourhood.
Different methods vary in their choice of neighbourhood ge-
ometry, search method and reconstruction order (e.g. random
or raster scan).

In texture synthesis and multiple-point statistics methods,
the results depend on the neighbourhood size used in the
search process (which is oftentimes chosen manually via ad
hoc methods). Liu & Shapiro (2015) show that the chosen
neighbourhood size affects the quality (e.g. the preserved ran-
domness) of the results, and they recommend choosing it to
be the range after which the two-point correlation function
dies out. In addition, Harrison (2001) shows that the recon-
struction order (e.g. a bottom-up raster-scan vs. a top-down
raster-scan) could affect the results in texture synthesis (and
hence in multiple-point statistics). Addressing these issues in
3D C&R is particularly challenging, not only because 3D mi-
crostructures are much more complex than 2D ones, but also
because the associated computational costs are significantly
higher.

Bostanabad et al. (2016) have recently developed a versatile
and promising approach for microstructure C&R based on su-
pervised learning that is applicable to a wide range of material
systems [e.g. isotropic, anisotropic and porous with high/low
volume fraction (VF)] and is much faster than other meth-
ods in the literature. The fundamental idea is to first convert
the original microstructure image into an appropriate train-
ing dataset and then to fit a supervised leaning model to this
dataset, for predicting the phase of each pixel as a function of
its surrounding pixel phases. This fitted model is subsequently
employed for fast and efficient reconstruction of statistically
equivalent microstructures with arbitrary size. In this paper,
we improve and generalize the approach in three important
ways: (1) C&R of 3D microstructure images: as most important
material properties (e.g. permeability) require 3D simulations,

we extend the approach to characterize 3D images and demon-
strate its computational superiority in 3D reconstruction over
other existing methods. (2) Incorporation of user-defined pre-
dictors into the supervised learning model: in Bostanabad et al.
(2016), the model predictors consisted of individual pixels and
user-defined predictors (i.e. knowledge- or physics-based char-
acteristics involving combinations of pixels) were not included
into the model. In this paper, we illustrate how such predic-
tors can be defined and incorporated to better learn a particular
characteristic (e.g. local VF or connectivity) in the original mi-
crostructure image and preserve it in the reconstructed ones.
The user-defined predictors can be defined in 2D or 3D and
on any microstructure sample; an attractive characteristic of
this approach is that if the user-defined predictor does not im-
prove the predictive power of the supervised learner, it will
be automatically pruned from the model. (3) Addressing po-
tential computational issues that may arise: if the original
image is complex and high resolution (large number of pix-
els/voxels), the aforementioned training dataset will require
large memory. This issue is of particular concern in 3D, and
in the ‘Reduced model’ section we demonstrate how the size
of the dataset can be reduced with little adverse effect on the
results. In the ‘Results and discussions’ section, we apply the
developed approach to three examples: an isotropic clustered
nanocomposite, a porous medium and an anisotropic struc-
ture. In the ‘Conclusion and future work’ section, we conclude
the paper and elaborate on the challenges and possible future
directions.

Review of the 2D supervised learning approach for stochastic
microstructure C&R

Denote the collection of pixels in the original microstruc-
ture image of size n1 (rows) × n2 (columns) by X . The el-
ements of X are indexed in a raster-scan order; starting
from the pixel at the top left corner and, progressing line-
by-line horizontally, ending at the bottom right pixel. For a
bi-phase material, the elements of X are binary, Xi j ∈ {0, 1}
for i = 1, 2, . . . , n1, and j = 1, 2, . . . , n2. As described in
Bostanabad et al. (2016), X can be thought of as a ran-
dom sample from its underlying full joint distribution, denoted
by f (X). From this perspective, reconstruction of a statisti-
cally equivalent image (Y) of any size requires the estimation
of f (X), which can be decomposed as:

f (X) = f (X11) f (X12|X11) f (X13|X11, X12) · · ·
f (Xn1n2 |X11, X12, . . . , Xn1(n2−1))

= f
(

X11|X (<11) )
f
(

X12|X (<12)) f
(

X13|X (<13)) · · ·
f
(

Xn1n2 |X (<n1n2)) , (1)

where X (<i j ) denotes the set of all the pixels in X ordered
before Xi j . Equation (1) illustrates that, given a model that
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Fig. 1. (Colour online) A subset of the pixels indexed (in a left-to-right then
top-to-bottom raster-scan order) before Yi j is called the causal neighbour-
hood (M ij) of that pixel (here, the size of M ij is set to w = 3). The total

number of pixels in M ij is (2w+1)2−1
2 . The response pixel and those within

M ij are colour-coded as, respectively, black and blue. The red and blue
pixels are indexed (in a raster-scan order) before Yij, whereas the yellow
pixels are indexed after Yij (the colours do not represent phase values).

approximates the conditional distributions (and hence f (X))
on the right-hand side, we can reconstruct Y pixel-by-pixel
by sampling from that model (in the ‘Reconstruction in 3D’
section we elaborate on how the various conditional proba-
bilities on the right-hand side in Eq. (1) can be estimated with
only a single model). To facilitate the estimation of f (X) (or to
make the approximation of f (X) tractable), we assume X can
be modelled as a form of stationary MRF with the following
properties:

• Locality: f (Xij|X (<ij)) = f (Xi j |M ij) for a sufficiently
large (causal) neighbourhood M ij.

• Stationarity: f (Xij|M ij) does not depend on pixel
location (i, j ).

In the above, M ij is a sufficiently large group of pixels
surrounding one side of Xij (see Fig. 1) and the conditional
probability f (Xij|M ij) has a Bernoulli distribution with an
event probability (the event being defined as Xij = 1) that de-
pends on the pixel values in M ij. M ij is called the causal (Burt
& Adelson, 1983) neighbourhood of Xij, because it only in-
cludes a subset of the pixels in X (<ij), i.e., only pixels that are
before Xi j in a raster-scan order (see the ‘Reconstruction in
3D’ section for more discussions).

Intuitively, the above assumptions mean that given M ij,
there is no additional information in X (<i j ) that could further
improve the predictability of Xij. With these assumptions, X
can be converted into a training dataset in which the phase
of each of its pixels is represented as a function of the phase
values of some of its surrounding pixels (see Fig. 2). Once the
training dataset is built, any off-the-shelf supervised learner
can be used to fit a model to it that represents the conditional
distribution f (Xij|M ij). Making use of the decomposition (1)
with the MRF property, this model can subsequently be used
to reconstruct an image of arbitrary size pixel-by-pixel in a
raster-scan order.

Proposed extensions of the approach

The basic procedures of the extended approach are summa-
rized in Figure 3 and will be described throughout this sec-
tion. We first elaborate on the reconstruction details (the
‘Reconstruction in 3D’ section) and then explain how user-
defined predictors can be incorporated into the model (the
‘User-defined predictors’ section). We conclude this section by
introducing the reduced model (the ‘Reduced model’ section)

Fig. 2. (Colour online) (A) The original binary image X. The white and black colours represent phase values. (B) The magnified view of a small portion
of X in which the pixels are separated with dashed blue lines. The highlighted regions (pixels within red boxes) represent two instances of a causal
neighbourhood with size w = 2. (C) Rearrangement of the pixels in the highlighted regions in (B) into row vectors for building a training dataset. This
procedure is repeated for all the pixels in X to convert it into a training dataset.

C© 2016 The Authors
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Fig. 3. Flowchart of the supervised learning approach for microstructure C&R.

and addressing potential boundary issues (the ‘Boundary ef-
fects and initialization’ section).

Reconstruction in 3D

Bostanabad et al. (2016) developed two methods for re-
construction in 2D; a noncausal approach based on Gibbs
sampling (Casella & George, 1992) and a causal one. As the
former approach is iterative and hence computationally pro-
hibitive in 3D, we only extend and use the causal approach in
this paper.

We reconstruct an image in 3D slice-by-slice; with a raster-
scan order within each slice. This way the shape of M in 3D
needs to be similar to half a cube (see Fig. 4) to only include the
already reconstructed surrounding voxels. To justify this, we
write the joint distribution f (X) in the conditional form as:

f (X) = f (X111) f (X121|X111) f (X131|X111, X121) · · ·
f (Xn1n2n3 |X111, X121, . . . , Xn1(n2−1)n3 )

= f
(

X111|X (<111) )
f
(

X121|X (<121))
f
(

X131|X (<131)) · · · f
(

Xn1n2n3 |X (<n1n2n3)) , (2)

where X (<ijk) denotes the set of all the voxels in X ordered before
Xijk. Equation (2) holds for both the original image and the one
being reconstructed. It illustrates that if we use X to learn a
model that can predict the phase value at any location (i, j, k)
given the phase values of voxels located before it, we can use
that model to predict the phase value at any location (i, j, k) in
Y where all the voxel phases before (i, j, k) have already been
predicted.

With the stationary MRF assumptions, this model can be
simplified to f (Xijk|X (<ijk)) = f (Xijk|M ijk) with the same con-
ditional probability function f (X|M) (independent of voxel
index (ijk)) for every voxel in the image. To learn one single
model in characterization that we can use for predicting the
Bernoulli phase probability value at any voxel location dur-
ing reconstruction (and then generating a voxel phase value
from the predicted Bernoulli probability), we must fix the size

of M. Otherwise, the number of neighbouring voxels in the
conditional distributions in Eq. (2) would change and one
would need to learn multiple models (each corresponding to
an M with a different size) and use them in reconstruction
accordingly (for instance, at X121 and X131 the voxels which
are already reconstructed are, respectively, M121 = {X111}
and M131 = {X111, X121}, and the corresponding size of M ijk

is 1 and 2). For a fixed neighbourhood size, three questions
must be answered: (1) what is an appropriate size (w) for M ,
(2) how to sample from the boundary voxels in X and (3) how
to reconstruct the boundary voxels in Y.

As discussed in Bostanabad et al. (2016), the optimum
neighbourhood size is typically on the order of the largest topo-
logical feature in X and can be determined in a data-driven
manner via cross-validation (CV) by starting with a relatively
large neighbourhood and shrinking the size down until the
CV error is minimized. An attractive feature of this approach
is that, provided that M is not too small, the results are not
overly sensitive to the size of M: If the chosen size is larger
than the optimum one, the supervised learner will automati-
cally exclude the unimportant voxels (predictors) from M . If,
however, the chosen size is somewhat smaller than the opti-
mum value, the supervised learner can partially compensate
for this by building a more complex model. Because we use
classification trees as the supervised learner, complexity refers
to the number of tree leaves and not the number of predictors
(which equals the number of voxels in M) of the tree.

Regarding the second question, we simply exclude the
boundary voxels of X when building the training dataset (see
the ‘User-defined predictors’ section) because the size of X is
significantly larger than M and hence little (if any) informa-
tion will be lost. In reconstruction, however, the predictions
close to the boundaries (where M does not fall entirely in Y)
will be inaccurate. To mitigate this issue, we reconstruct a
larger image than required and discard the boundaries (see
the ‘Boundary effects and initialization’ section).

After the model (with an Mof size w, see Fig. 4) is learned, re-
constructing an image of arbitrary size s1 × s2 × s3 is achieved
via the steps in the following pseudo-code (due to causal

C© 2016 The Authors
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Fig. 4. (Colour online) A full 3D causal neighbourhood of voxel Yijk with size w = 3 from two different perspectives (the voxels outside of M ijk are not

shown). The total number of voxels in M ijk is (2w+1)3−1
2 . The response voxel and those within M ijk are colour-coded as, respectively, black and blue (the

colours do not represent phase values).

reconstruction, only the boundaries of the initial Y are needed
in Step 1):

(1) Start with an initial image Y of size (m1 + 2w) ×
(m2 + 2w) × (m3 + w), where m1 > s1, m2 > s2 and
m3 > s3 (see the ‘Boundary effects and initialization’
section).

(2) For k = w + 1, w + 2, . . . , w + m3 (slice)
For i = w + 1, w + 2, . . . , w + m1 (row)
For j = w + 1, w + 2, . . . , w + m2 (column)

(a) Use the fitted supervised learning model to pre-
dict the Bernoulli parameter pijk = f (Yijk|Mijk) and
generateYijk ∼ Beroulli( pijk).

(b) Use the newly generated Yijk to update the corre-
sponding voxel in Y.

(3) Pick the central part of Y with size s1 × s2 × s3 as the
new image.

User-defined predictors

The performance of the developed approach can be enhanced
via user-defined predictors. By ‘user-defined predictor’, we
mean some combination of the voxels within each causal
neighbourhood into a single variable that will typically rep-
resent some physically meaningful descriptor of the neigh-
bourhood and that will be included as an additional predictor
variable in the supervised learning model. The purpose is to
improve the prediction of the individual response voxel asso-
ciated with each neighbourhood. User-defined predictors can
be used to effectively capture a particular morphological char-
acteristic and are general in that they can be applied to 2D/3D
microstructures of any kind (e.g. isotropic and anisotropic).
An appealing feature of the approach is that if the user-defined
predictor does not increase the predictive power of the model,
the supervised leaner will automatically exclude it from the
final fitted model at the end of the learning stage. We have
tried a myriad of user-defined predictors, and in this paper we
demonstrate the use of the ones that consistently improved

the performance of the fitted model. We emphasize that (1)
all the user-defined predictors are incorporated directly in the
supervised learning stage in a data-driven manner (i.e. no
tuning is required), and (2) how we use these predictors is
completely different than how physical descriptors are used
in optimization-based approaches (reviewed in the ‘Introduc-
tion’ section). We elaborate more on the second point at the
end of this section.

Below, we first elaborate on how the model is learned and
then explain how the user-defined predictors can be incorpo-
rated into it.

Supervised learner. Having chosen the size of M , the next
step is to build the training dataset by (1) placing M on all the
voxels (excluding the boundary ones) of X , (2) recording the
phase values observed at each voxel in the neighbourhood and
(3) rearranging the order of the stored values into a row vector
(see Fig. 2 for a 2D illustration). This way, a 2D array of data,
denoted by D , with R = (n1 − 2w) × (n2 − 2w) × (n3 − w)
rows and C = 1 + (2w+1)3−1

2 columns will be built from the
collection of voxels in the original n1 × n2 × n3 image X . In
each row of D , the first column stores the ‘response’ vari-
able Xijk and the remaining columns store the corresponding
‘predictor’ variables in M ijk.

Once D is built, any off-the-shelf supervised learning algo-
rithm can be used to automatically fit a model to it. Our stud-
ies indicate that a nonparametric classification tree (Breiman
et al., 1984; Hastie et al., 2009) is particularly well suited
to model f (Xijk|M ijk). Trees are especially suited for handling
categorical variables, and our response and predictor variables
are as such. Trees are also highly interpretable and, as shown
in the ‘Results and discussions’ section, very computationally
efficient to either fit or make predictions with.

Construction of classification trees from training data dates
back to the 1960s (Ripley, 1996). In a classification tree (see
Fig. 5), the root node is located at the top level, leaf nodes
are located at the bottom level and interior nodes are in be-
tween the root and the leaves. Given a fitted classification tree
(fitting is automatically done in commercial software such as

C© 2016 The Authors
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Fig. 5. (Colour online) Pedagogical example of a classification tree model
with eight predictors. The root node is located at the top and the leaves
(green circles) at the bottom. The predictors are denoted by P1 thorough
P8 and each nonleaf node represents a splitting rule on the corresponding
predictor: when traversing the tree down, if a predictor’s value is smaller
than the splitting value (here 1) its left branch is chosen. Otherwise, the
right branch is chosen.

Python, Pedregosa et al., 2011), the response probability pijk

(Step 2.a in the pseudo-code) of a future observation is pre-
dicted by traversing the tree down following the sequences of
splits from the root node to the correct leaf node and assigning
the stored probability in that leaf node to the observation. The
class probability in a leaf is learned in the fitting process via
dividing the number of training observations with response
values in that class by the total number of training observa-
tions which fell into that leaf. In our application, each training
observation corresponds to one nonboundary voxel (say voxel
(i, j, k)) in X , and Xijk and the corresponding M ijk are the re-
sponse variable and the set of predictor variables, respectively,
for that observation.3

Classification tree algorithms, like any other supervised
learning algorithm, have some tuning parameters that can
be adjusted to increase the predictive power. An advantage of
our approach is that we can simply use CV to select all the
tuning parameters of the supervised learning algorithm in or-
der to best approximate f (Xijk|M ijk) and do not rely on other
methods (e.g. correlation functions) to determine any of the
parameters (i.e. the neighbourhood size, w).

Incorporation of user-defined predictors into the model. Poten-
tial model inaccuracies, coupled with the boundary effects,
may sometimes result in reconstructed images having differ-
ent VFs than the original image. Bostanabad et al. (2016)

3 In commercial software, the set of predictors should be passed to the supervised

learner as a row/column vector and hence the predictors in M ijk need to be rear-

ranged accordingly. See Figure 2(C).

addressed this issue by introducing an ad hoc offset param-
eter that empirically adjusts the conditional probabilities of
the fitted tree model in an attempt to better match the VFs
of the original and reconstructed images. As the adjustment
is done iteratively, this method might be unappealing in 3D
since the reconstruction cost is in the order of a few seconds (as
opposed to 2D where the cost is less than a second). Moreover,
it alters the supervised learning model in that it no longer rep-
resents exactly what was learned purely from the data. In this
paper, to closely match the VF of the reconstructed samples
with that of X in 3D, we define a new predictor denoted by PVF

which captures the local VF in X . As opposed to other pre-
dictors in the model (which are binary and correspond to the
individual voxels in M ijk), PV Fijk is defined as the average of all
the phase values in M ijk at Xijk and 0 ≤ PVFijk ≤ 1. When fitting
the supervised learning model, the additional predictor PV F is
included as an additional column in the training dataset D .
During reconstruction, for predicting the phase value at Yijk,

the set of predictor voxels in the neighbourhood M ijk of Yijk

is also augmented with PV Fijk before passing it to the fitted
classification tree. We note that the same supervised learning
software can be applied whether or not PVF is included as an
additional predictor, because tree fitting algorithms can han-
dle continuous variables. Although the use of a continuous
predictor in the training dataset might slightly increase the
fitting cost, it eliminates the iterative approach for matching
the VFs in the reconstruction step.

Our studies show that sometimes the phase connectivity in
the reconstructed images is slightly less than that in the orig-
inal image if only VF is used as an additional predictor. To
address this issue, we consider three categorical user-defined
predictors (denoted by PC i , i = 1, 2, 3), which capture the
phase connectivity of the response voxel in three orthogonal di-
rections. In particular, because for a two-phase microstructure
(i.e. phase values are either 0 or 1) the probability that Xijk = 1
is estimated, we define the PC i ’s as (w is the size of M):
{

PC 1 = 1 if X(i−1)jk = X(i−2)jk = · · · = X(i−w) j k = 1
PC 1 = 0 otherwise

, (3.1)

{
PC 2 = 1 if Xi ( j−1)k = Xi ( j−2)k = · · · = Xi ( j−w)k = 1
PC 2 = 0 otherwise

, (3.2)

{
PC 3 = 1 if Xi j (k−1) = Xi j (k−2) = · · · = Xi j (k−w) = 1
PC 3 = 0 otherwise

. (3.3)

Put another way, the PC i ’s help the model to learn how
likely the Xijk = 1 event is if all the voxels to one side of Xijk

along the three principal direction lines are 1. Similar to PV F ,
to incorporate these predictors into the model, the training
dataset must be augmented with three more columns, and in
reconstruction (for predicting the phase value at Yijk) the set
of predictor voxels in M ijk is augmented with the additional

C© 2016 The Authors
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user-defined predictors before passing the set to the fitted clas-
sification tree. As illustrated in the ‘Results and discussions’
section, the PC i ’s notably improve the performance of the
reduced model (introduced in the ‘Reduced model’ section)
especially if the original microstructure is anisotropic.

One way to view our user-defined predictors is as physi-
cal descriptors that characterize each small neighbourhood
(rather than the entire microstructure image). In fact, physi-
cally meaningful descriptors from the existing literature have
inspired our choice of analogous user-defined predictors that
we have tried in our method. This is how we came up with PV F

(inspired by V F ) and PC i (inspired by lineal-path function). In
prior work that has used physical descriptors, a single value
(or distribution) is calculated for an entire microstructure im-
age (e.g. a microstructure image with a V F of 20% or with a
mean nearest-neighbour distance of 100 nm, etc.). This single
value for the descriptor(s) serves as a summary characteriza-
tion of the microstructure image and, in optimization-based
approaches, is used as an optimization criterion for matching
the reconstructed and original samples. In contrast, in our use
of user-defined predictors, we do not have a single value as-
signed to them for the entire image. Rather, a separate value for
the predictor is calculated for the small causal neighbourhood
surrounding each voxel of the microstructure image (see Fig. 4
for an illustration of the neighbourhood). For example, in the
case of PV F , the neighbourhood surrounding each voxel has
its own VF value calculated. This value is then used as an ad-
ditional ‘predictor variable’ when predicting the phase value
for that voxel.

Finally, we emphasize that to implement the approach with
any user-defined predictors incorporated into the model, all
that needs to be done is the appropriate augmentation of the
training dataset. The supervised learner will automatically de-
termine whether the defined predictor increases the predictive
power of the model and if so, how it should be incorporated
into the model.

Reduced model

Computational issues are always a concern in 3D C&R. In our
case, a potential computational issue is the size of the training
dataset (D ) that needs to be stored until the model is learned.
This issue will be particularly challenging if a large neigh-
bourhood is required to learn the morphology of a relatively
large microstructure (e.g. if w = 10, the number of predictors,
including PV F and PC i ’s, would be 4634). We address this
issue by changing the shape of the neighbourhood from full
3D to partial 3D (see Fig. 6 and compare it to Fig. 4). This
neighbourhood consists of three orthogonal planes of voxels
as well as four individual voxels. The individual voxels are lo-
cated at the intersection corners of the planes. The reason that
such reduction in the number of neighbouring voxels (which
are not immediately next to the response voxel) bears negligi-
ble adverse effect on the performance is that once the number

Fig. 6. (Colour online) A partial 3D neighbourhood of size w = 3 from
two different perspectives. This neighbourhood has less voxels in it than a
full 3D neighbourhood (Fig. 4). The total number of voxels in this neigh-
bourhood is 3w(2w + 1) + 4.

of predictors is reduced, the classification tree model partially
compensates for it by finding appropriate rules,4 which results
into partitioning the predictor–variable space into smaller re-
gions (i.e. the tree will have more leaves). In this paper, we use
both the full 3D and the partial 3D neighbourhoods to charac-
terize and reconstruct three 3D microstructures and illustrate
that the results are comparable.

Boundary effects and initialization

As a single model is used to estimate the various conditional
probabilities on the right-hand side of Eq. (2), inaccuracies will
be introduced into the reconstructed image. That is, since at
the boundary voxels of Y not all the predictors are available
in M , the predictions at those voxels will be less reliable. To ad-
dress this issue, we note that this source of prediction error dies
out as one moves away from the boundary voxels, and hence
our solution is to reconstruct a larger image than required and
choose the central part. Figure 7 illustrates this for a 3D struc-
ture (half of the structure to the right is cropped to reveal its
interior). The blue region represents the reconstructed image
(from the pseudo-code in the ‘Reconstruction in 3D’ section)
and the green voxels are added to its exterior so as its boundary
voxels would not have missing data in their neighbourhood.
The thickness of the green region equals the neighbourhood
size (w). Since the green region is not updated, the boundary
voxels of the blue region may be adversely affected. This ad-
verse effect will die out as we move to the interior of the blue
region. Hence, we choose the central part of the blue region
of size s1 × s2 × s3 (a cross-section of which is shown with a
black box in Fig. 7) as the final reconstructed image.

The differences m1 − s1, m2 − s2 and m3 − s3 depend on
the initial image (the green region in Fig. 7). We investi-
gated the performance of our approach with different initial
images: (1) pure white/black, (2) pure random and (3) gener-
ated by splicing copies of the original 3D image side-by-side.

4 The sequences of the splits (on the predictors) from the root node to a leaf, determine

a rule in a classification tree.
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Fig. 7. (Colour online) To reduce the inaccuracies due to boundary effects, a larger image is reconstructed and the central part is chosen as the final
image (the colours do not represent phase values). (A) The initial image of size (m1 + 2w) × (m2 + 2w) × (m3 + w). If the desired size of Y is s1 × s2 × s3,
a larger image of size m1 × m2 × m3 is reconstructed. In this figure, w = 3 and only half of the structure is shown to reveal the interior. (B) The first 2D
slice that will be reconstructed (its position in the 3D image is illustrated with dashed red lines). Y444(the first voxel to be reconstructed) is coloured in red.
(C) The 3D causal neighbourhood of Y444 from two different perspectives (the boundaries of the neighbourhood are coloured with solid red lines in A).

Our studies indicate that the latter produces better results and
also demonstrates that the algorithm can learn the random-
ness of the microstructure and automatically inject it into the
reconstructed image. In this case, the differences can be set
to (m1 − s1, m2 − s2, m3 − s3) ∼ (2w, 2w, w).

Results and discussions

In this section, we apply the developed approach to three ex-
amples (EX1, EX2 and EX3) and evaluate the statistical equiv-
alency of the secondary phase (inclusions or pores) between
the original and reconstructed 3D images. The evaluations
are based on four measures: the VF, the specific surface5 (SS),
the two-point correlation (S2(r )) function and the lineal-path
(L (r )) function. In case of S2(r ) and L (r ), the errors are cal-
culated via the following formula (which is equivalent to how
the energy is defined in the optimization-based approaches):

� f =
∑

r

[
foriginal(r ) − freconstructed(r )

]2
,

where r is the length of the thrown line (see the Appendix),
and f is either S2(r ) or L (r ). We note that in all the exam-
ples (1) the size of the reconstructed samples is set to that
of the original microstructure but this is not necessary, and
(2) the statistical evaluations are not reported for the primary
phase (the matrix) because the associated errors were rela-
tively smaller than those reported herein for the secondary
phase.

It should be emphasized that none of the aforementioned
performance measures are used in the C&R process. In partic-
ular, all the model tuning parameters of the supervised learner
as well as the neighbourhood size are solely determined via CV.
Moreover, the CV accuracy measure is the standard supervised

5 Area of the interphase per unit volume of the medium.

learning classification measure of predictive accuracy for in-
dividual voxels, and not some measure that involves the four
performance measures discussed above.

Clustered isotropic microstructure

Figure 8(A) illustrates the microstructure of interest in this
example; a clustered isotropic nanocomposite with 9.27% sil-
ica (secondary phase) in a rubber matrix. The inclusions form
small clusters and possess random geometry and irregular
spatial distribution pattern.

Following the procedure outlined in the ‘Proposed exten-
sions of the approach’ section, we fitted two causal models to
the training image in Figure 8(A); one via a full 3D neighbour-
hood and one with a partial 3D neighbourhood. Each of these
models was subsequently used to reconstruct a batch of 200
microstructure samples to assess the sample-to-sample varia-
tions. Figures 8(B) and (C) each illustrate a randomly chosen
sample from each batch and indicate that both models capture
the stochasticity of the original structure quite well. Details on
the fitted parameters, computational costs and summary of
statistical evaluations are given in Tables 1 and 2. In this ex-
ample, the inclusions are quite small (no larger than 15 pixels
on each side) and so we set the neighbourhood size (w) in the
full and partial models to, respectively, 5 and 7. With these
choices of w, almost all the predictors (including all the user-
defined ones) are found to be important in both models, and
the trees have many leaves (see the first two rows of the last
column in Table 1). We repeated the above procedure with
larger w’s and achieved similar results in terms of statistical
equivalency.

As the first two rows of Table 2 show, the total computa-
tional cost (the sum of Char. and Avg. rec. costs) is quite small,
and this is of particular interest if a large number of samples
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Fig. 8. (Colour online) EX1: (A) The original bi-phase training image with 9.27% silica in a rubber matrix, (B) a representative reconstructed image with
a model trained using a full 3D neighbourhood and (C) a representative reconstructed image with a model trained using a partial 3D neighbourhood. The
numbers are voxel indices and the two colours merely distinguish the two constituents. A small portion of all the images is cropped to reveal the interior
of the structures.

Table 1. The fitted parameters and computational costs for all the exam-
ples. A full 3D neighbourhood is used in the full 3D models, whereas a
partial 3D neighbourhood is used in the partial 3D models. The character-
ization (Char.) cost includes the total cost of fitting the tree. The average
reconstruction (Avg. rec.) cost is calculated by averaging the reconstruc-
tion cost of all the samples in a batch (200 samples in each batch). The last
two columns enumerate the number of leaves and predictors (out of all the
initial predictors) in the fitted tree. See Figures 4 and 6 for the definition
of window size.

Window Char. Avg. rec. Leaf Retained
Example size cost (s) cost (s) count predictors

1, Full 3D model 5 389.30 3.91 5002 658/669
1, Partial 3D model 7 114.47 2.87 4767 320/333
2, Full 3D model 6 374.72 5.88 7689 1098/1102
2, Partial 3D model 10 147.59 5.41 6223 636/638
3, Full 3D model 7 473.93 9.38 3791 1430/1691
3, Partial 3D model 12 162.52 7.96 3588 878/908

are to be reconstructed. We note that (1) although the neigh-
bourhood size parameter w is larger in the partial model, the
model with a full 3D neighbourhood has more voxels (predic-
tors), and hence its fitting cost is higher (389.3 vs. 114.47 s),
and (2) to arrive at similar results (in terms of performance
measures), w must be larger in the partial 3D model.

In this example, we used each model to generate a batch of
200 samples, each sample comprising one reconstructed im-
age. Each of the samples was compared to the original struc-
ture based on the aforementioned four measures and the re-
sults were averaged over the entire 200 reconstructed samples
(the associated standard deviations were negligible and
therefore are not reported). Table 2 summarizes the evalu-
ations and indicates that (1) incorporation of the user-defined
predictors into the model has made it possible to closely match

the VF as well as the connectivity of the inclusions in the origi-
nal and reconstructed structures (see TableA1 in the Appendix
for evaluation results without these predictors); and (2) the al-
gorithm can capture the spatial distribution and the specific
surface of the inclusions quite well.

To visualize the variations in the performance measures
across the samples, S2(r ) and L (r ) of two of the representa-
tive samples from each batch are plotted against those of the
original structure in Figure 9, and it can be observed that the
statistical equivalency is well preserved for the whole range
of correlation functions. In addition, the box plots in Figure
9(C) clearly shows that the variations in the specific surface is
negligible for all the samples (reconstructed with either of the
models) and the ensemble average of both batches is close to
the specific surface of the original image. In Figure 9(C) the
blue boxes mark the 25th and 75th percentiles, the red lines
are the medians and the whiskers extend to include all the
samples.

Porous medium

The porous medium of interest (Fig. 10A) is a ceramic mi-
crostructure with pores occupying 39.13% of the volume.
Compared to the previous example, the VF and connectivity
range of the secondary phase (the pores) is significantly higher
and therefore it is anticipated that a more complex model is re-
quired for effective characterization. In porous materials, voids
are the inhomogeneities and affect the solid–liquid interaction
(e.g. porosity and specific surface of a catalyst are important
for catalytic activity, see Debye et al., 1957). The connectivity
of pores in this structure spans up to 20 pixels.

As in the previous example, we fitted two causal models
to the training image in Figure 10(A); one with a full 3D
neighbourhood and one with a partial 3D neighbourhood
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Table 2. Average errors in volume fraction (|�V F |), two-point correlation function (�S2(r )), lineal-path function (�L(r )) and specific surface (�SS)
between the original structure and the reconstructed samples. The results are averaged over all the samples in a batch.

Example, Model |�V F | �S2(r) �L(r) �SS

1, Full 3D model 5.22 × 10−5 3.29 × 10−6 4.66 × 10−6 2.18 × 10−5

1, Partial 3D model 4.49 × 10−5 6.75 × 10−6 5.11 × 10−6 2.80 × 10−5

2, Full 3D model 1.10 × 10−4 2.84 × 10−4 5.48 × 10−4 1.60 × 10−3

2, Partial 3D model 1.37 × 10−4 2.34 × 10−4 5.51 × 10−4 1.70 × 10−3

3, Full 3D model 8.18 × 10−5 2.59 × 10−4 6.66 × 10−4 3.10 × 10−3

3, Partial 3D model 1.05 × 10−5 4.31 × 10−4 3.75 × 10−4 6.28 × 10−3

Fig. 9. (Colour online) (A) Two-point correlation and (B) lineal-path functions of the original and four of the reconstructed samples in EX1. Two of the
samples are randomly chosen from the batch of the samples reconstructed with a model trained using a full 3D neighbourhood, whereas the other two
are randomly chosen from the batch of the samples reconstructed with a model trained using a partial 3D neighbourhood. (C) Box plot of specific surface
of all the reconstructed samples (200 samples for each model). The specific surface of the original structure is shown with a cyan diamond.

Fig. 10. (Colour online) EX2: (A) The original porous structure with 39.13% of pores, (B) a sample reconstructed image with a model trained using a full
3D neighbourhood and (C) a sample reconstructed image with a model trained using a partial 3D neighbourhood. The numbers are voxel indices and the
two colours merely distinguish the two constituents. A small portion of all the images is cropped to reveal the interior of the structures.

and then used these models to reconstruct two batches of 200
microstructure samples. Figures 10(B) and (C) each illustrate
a randomly chosen sample from each batch and indicate that
both models provide visually appealing results. Contrary to
EX1, we conjectured that a large neighbourhood is required
to effectively learn the complex spatial voxel dependencies
and therefore used a neighbourhood size of 15. However, it

was observed that most of the predictors which were further
away from the response voxel were not used in the model
and hence we reduced the size to those reported in Table 1.
With these choices of w, almost all the predictors (including
the user-defined ones) are used in both models and the trees
have many leaves (see the last two rows of the last column in
Table 1).
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Fig. 11. (Colour online) (A) Two-point correlation and (B) lineal-path functions of the original and four of the reconstructed samples in EX2. See the
caption of Figure 9 for more details. (C) Box plot of specific surface of all the reconstructed samples (200 samples for each model). The specific surface of
the original structure is shown with a cyan diamond.

Fig. 12. (Colour online) EX3: (A) The original anisotropic structure with VF of 39.16%, (B) a sample reconstructed image with a model trained using a
full 3D neighbourhood and (C) a sample reconstructed image with a model trained using a partial 3D neighbourhood. The numbers are voxel indices and
the two colours merely distinguish the two constituents. A small portion of all the images is cropped to reveal the interior of the structures.

Table 1 demonstrates that the total computational cost is
quite small for both models, with characterization cost of the
full 3D model being higher than that of the partial 3D model
as it has more predictors in its neighbourhood. Similar to EX1,
to achieve comparable performance between the two models,
a larger neighbourhood is required for the partial 3D model.

Two hundred microstructures were reconstructed with
each model and all were compared with the original struc-
ture. Figures 11(A) and (B) illustrate sample results for two
randomly chosen microstructures from each batch. It can
be observed that the correlation functions match quite well
and the general trends are captured. The average errors in
performance measures for the samples in each batch are sum-
marized in Table 2 (the associated standard deviations were
negligible and therefore are not reported). It is evident that the
average errors are quite small but have increased compared
to EX1; which was expected since the original microstructure
in Figure 10 is more complex than that in Figure 8. It can
also be observed that the model fitted with a partial 3D neigh-

bourhood performs no worse than the one fitted with a full
3D neighbourhood. This finding is of particular interest if one
intends to characterize a high resolution microstructure and
cannot afford fitting a model with a full 3D neighbourhood.
Finally, Figure 11(C) illustrates that the variations in the spe-
cific surface is quite small across the samples (reconstructed
with either of the models) and the ensemble average of both
batches is close to the specific surface of the original image.

Anisotropic structure

The previous two examples were isotropic, and so they might
not have fully demonstrated the potentials of the reduced
model and the user-defined predictors. In this section, we
test the algorithm on the anisotropic structure illustrated in
Figure 12(A). It can be observed that the connectivity of the
secondary phase is well beyond 20 pixels in this microstructure
and the direction of anisotropy is in none of the orthogonal
planes.
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Fig. 13. (Colour online) (A) Two-point correlation and (B) lineal-path functions of the original and four of the reconstructed samples in EX3. (C) Box plot
of specific surface of all the reconstructed samples (200 samples for each model). See the caption of Figure 9 for more details.

We followed the same procedure as in the previous two ex-
amples, fitting a full and a partial model to the original sample
and subsequently using each of them to reconstruct a batch of
200 samples (see Tables 1 and 2 for simulation details and per-
formance evaluations). Figure 12(B) and (C) illustrate sample
results for two randomly chosen microstructures from each
batch. Similar to EX1 and EX2, it is observed that (1) the cor-
relations, specific surface and phase connectivity are quite well
preserved (see Figure 13) across the reconstructed samples, (2)
the partial model requires a slightly larger neighbourhood to
adequately learn the morphology and (3) almost all the pre-
dictors (including all the user-defined ones) were kept in the
model.

We note that the use of the PC i ’s has improved the partial
3D model more in this example as compared to the previous
two examples (compare the performance measures in Tables 2
and A1), and this highlights the importance of incorporating
physics-based predictors into the supervised learning model.

Conclusion and future work

The primary goal of this paper is to extend the recently de-
veloped approach in Bostanabad et al. (2016) on supervised
learning-based C&R in three major directions: extension to
3D, incorporation of user-defined predictors into the super-
vised learner and addressing computational issues with a re-
duced model. The method begins by converting the original
3D microstructure image into a set of training data, to which
a supervised learning model is fitted. This relatively compact
model learns the inherent stochasticity of the structure and is
used to reconstruct any number of statistically equivalent 3D
microstructure samples.

In the ‘Reconstruction in 3D’ section, we argued that, under
the MRF assumption, our model provides an implicit represen-
tation of the full joint distribution f (X) of the phase values of
all the voxels in the microstructure image. In theory, f (X)
provides the most generic representation possible of the mi-
crostructure nature. In practice, the quality of this implicit

representation depends on the ability of the supervised learn-
ing model to capture the conditional distributions f (Xij|M ij),
as well as on the validity of the stationary MRF assumptions.
In the ‘Results and discussions’ section, we demonstrated that
the fitted classification tree did a reasonable job in learning the
stochastic microstructure behaviour in the examples, and the
reconstruction algorithm did a reasonable job in preserving it
in the reconstructed images.

The tree-fitting cost depends on the size (rows and columns)
of the training dataset (D ): the number of rows of D depends
on the size of the original image, whereas the number of its
columns depends on the number of predictors (the number of
voxels in the neighbourhood plus the number of user-defined
predictors). For general supervised learning applications, trees
are widely regarded as being computationally very efficient,
and our studies show that for a given training image (fixed
number of rows of D ), the fitting cost increases linearly with
the total number of predictors in the neighbourhood. In other
words, the cost is quite manageable even for complex mi-
crostructures which (potentially) require a large neighbour-
hood for effective learning. Our investigations indicate that
the aforementioned linear computational complexity does not
depend on the microstructure image. In addition, given a fit-
ted model, the reconstruction cost increases linearly with the
number of voxels in the reconstructed image, and hence the
reconstruction cost is also quite manageable for building an
ensemble of large microstructure images.

A major challenge in microstructure C&R is to build, with
isotropy and homogeneity assumptions, a 3D sample via a
single 2D image. The extension of our approach to tackle this
challenge is nontrivial as the joint probability in 3D cannot
be easily inferred from the one in 2D. However, we showed in
this paper that a partial 3D neighbourhood with only three
orthogonal planes can do a reasonable job in both learning
and reconstruction. We are now working to use this finding
and integrate it with ensemble/voting methods of supervised
learning models to learn a 2D image but reconstruct a 3D one,
for applications in which 3D images are difficult to obtain.
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Appendix

Two-point correlation and lineal-path functions

Following the notation introduced in the ‘Review of the 2D
supervised learning approach for stochastic microstructure
C&R’ section, we have:

Xijk =
{

1 if ijk ∈ phase 1
0 otherwise

,

here i j k is the voxel index and determines its location within
the image. Denoting this location by the vector r, the two-point
correlation function for phase i is defined as:

S(i )
2 (r1, r2) = X (r1) X (r2) ,

where the angular brackets denote the expectation opera-
tor. S(i )

2 can be thought of as the probability of tossing a
line on X and having both its ends land on phase i . If X

Table A1. Performance of the full and partial models without incorporating the user-defined predictors into the supervised learner. See Table 1 for more
details on the measures.

Example, Model |�V F | �S2(r ) �L(r ) �SS

1, Full 3D model 8.42 × 10−4 4.17 × 10−6 1.21 × 10−5 2.12 × 10−4

1, Partial 3D model 6.40 × 10−4 9.70 × 10−6 2.01 × 10−5 3.14 × 10−4

2, Full 3D model 9.18 × 10−4 3.83 × 10−4 1.16 × 10−3 2.22 × 10−3

2, Partial 3D model 8.38 × 10−4 5.32 × 10−4 1.15 × 10−3 2.31 × 10−3

3, Full 3D model 1.10 × 10−4 9.77 × 10−4 8.67 × 10−4 4.40 × 10−3

3, Partial 3D model 1.03 × 10−3 2.02 × 10−3 3.33 × 10−3 9.08 × 10−3

is statistically isotropic, S(i )
2 will only depend on the Euclid-

ian distance between the two points and the orientation
will not matter. Furthermore, if X is homogeneous, S(i )

2
will be translationally invariant. Hence, for a homogeneous
and isotropic material, S(i )

2 has a simplified formulation
(S(i )

2 (r1, r2) = S(i )
2 (�r12) = S(i )

2 (|�r12|)) and can be effi-
ciently calculated via fast Fourier transform (Berryman, 1985;
Fullwood et al., 2008a).

Other methods such as Monte Carlo (MC) can also be used.
For example, for a homogeneous and isotropic structure a
sample MC procedure is as follows: A randomly oriented line
with length lk (0 ≤ k ≤ K ) is first randomly thrown on X for
a total of N times. Next, the number of times that the thrown
line has both its ends in phase i is calculated and then divided
by N. This process is done for all k (we chose the maximum
length as half of the original image size).

Lineal-path function (L (i )) is also similar to S(i )
2 in that it cap-

tures the probability of randomly throwing a line on X and
having the whole line land on phase i . L (i ) contains partial
information on connectedness and hence sometimes underes-
timates the clusteredness (i.e. if two points are connected via
a curved path, they will not contribute to L (i )).

Simulation results without the user-defined predictors

Table A1 summarizes the statistical evaluation results for all
the examples when the user-defined predictors are not incor-
porated into the fitted models. All the other parameters (i.e.
the neighbourhood size) are kept the same as those reported
in Table 1.
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