
Extrapolation with Gaussian Random Processes and Evolutionary Programming

Robert Planas, Nicholas Oune, Ramin Bostanabad1
Department of Mechanical and Aerospace Engineering, University of California, Irvine

Irvine, CA, USA

ABSTRACT
Emulation plays an indispensable role in engineering design.

However, the majority of emulation methods are formulated for

interpolation purposes and their performance significantly

deteriorates in extrapolation. In this paper, we develop a method

for extrapolation by integrating Gaussian processes (GPs) and

evolutionary programming (EP). Our underlying assumption is

that there is a set of free-form parametric bases that can model

the data source reasonably well. Consequently, if we can find

these bases via some training data over a region, we can do

predictions outside of that region. To systematically and

efficiently find these bases, we start by learning a GP without

any parametric mean function. Then, a rich dataset is generated

by this GP and subsequently used in EP to find some parametric

bases. Afterwards, we retrain the GP while using the bases found

by EP. This retraining essentially allows to validate and/or

correct the discovered bases via maximum likelihood estimation.

By iterating between GP and EP we robustly and efficiently find

the underlying bases that can be used for extrapolation. We

validate our approach with a host of analytical problems in the

absence or presence of noise. We also study an engineering

example on finding the constitutive law of a composite

microstructure.

Keywords: Gaussian Processes, Evolutionary Programming,

Extrapolation, Emulation, Maximum Likelihood Estimation.

1 INTRODUCTION
Emulation (aka metamodeling, surrogate modeling, or

supervised learning) plays an instrumental role in engineering

design. Over the past few decades, many emulation methods

have been developed including deep neural networks (NNs) [1],

Gaussian processes (GPs) [2-4], radial basis functions [5],

boosted trees [6], random forests [7], and many more. Each of

1 Corresponding author. Email: Raminb@uci.edu

these methods has its own pros and cons. However, they all share

one limitation: Their performance deteriorates in extrapolation.

As schematically illustrated in Fig. 1, our goal is to address this

limitation by systematically integrating GPs and evolutionary

programming (EP).

GPs are one of the most common emulators and have been

long used to replace expensive computer simulations or real

experiments with inexpensive but accurate emulators. GPs have

many attractive features that make them exceptionally desirable

for computationally intensive design tasks such as robust- and

reliability-based design [8], uncertainty quantification [3, 9], and

Fig. 1 Extrapolation: (a) GPs are accurate in interpolation but reverse

to their mean in extrapolation. (b) With our appraoch GPs can

extrapolate the data. The figure corresponds to example 1 in Sec. 4.1.

DETC2020-22381

Copyright © 2020 ASME

Proceedings of the ASME 2020
International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference
IDETC/CIE2020

August 17-19, 2020, Virtual, Online

V11AT11A004-1

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

mailto:Raminb@uci.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/DETC2020-22381&domain=pdf&date_stamp=2020-11-03

topology optimization [4]. GPs attractive features primarily stem

from their tractable conditional distributions, flexibility in

emulating various functional forms (e.g., smooth, fluctuating,

rough, …), ability to interpolate or regress, effective learning

from small dataset, relatively low computational costs (esp. on

small data), and ease of use.

However, similar to many other emulation methods the

predictive power of GPs significantly deteriorates in

extrapolation. This behavior is known as reversion to the mean

and is a by-product of the additive nature of a GP predictor. As

we explain in Sec. 2, a GP predictor has two parts where the first

part consists of a set of parametric mean functions while the

second part relies on correlations between the query point and

the training data. In extrapolation, these correlations become

extremely weak, so the GP predictor relies primarily on the mean

(hence the term reversion to the mean).

Reversion to the mean in GPs has been studied previously

and prior works can be divided into two primary categories. In

the first approach, new covariance functions are designed that

decay slower as the distance between a query point and the

training data increases [10-12]. These approaches break down if

the distance between the query points and the training data is

large.

In the second category, a set of parametric functions such as

polynomials and trigonometric functions are employed in GP

training. The significance of each function is then determined by

their coefficients which are generally estimated via maximum

likelihood estimation (MLE). A large (small) coefficient

indicates the importance (irrelevance) of the corresponding basis

function in explaining the relations between the inputs and

outputs of the training data. If many basis functions are used in

GP training, regularization must be exercised to avoid

overfitting. The primary limitation of addressing reversion to the

mean with this approach is that the basis functions are designed

by humans who generally include simple and application-

dependent functions. We believe that our contributions address

this shortcoming by automating the process of finding

parametric mean functions that can have high degrees of

nonlinearity and/or dimensionality.

As depicted in Fig. 2, our approach relies on GP emulation

and EP. Given a training dataset, we start by learning a GP

without any parametric mean function. Then, a rich dataset is

generated with this GP and subsequently used in EP to find some

basis functions. Afterwards, we retrain the GP while using the

bases found by EP. This process is continued until convergence.

The original training dataset is not directly used in EP for three

primary reasons. Firstly, its size might be too small to be directly

used in EP. Secondly, EP generally overfits if the dataset is noisy.

Thirdly, EP may require homogeneously or heterogeneously

distributed data (e.g., dense in some regions while sparse in other

regions) to find highly complex bases. In Sec.3, we elaborate on

how the iterative process enables (𝑖) validating the bases found

by EP and (𝑖𝑖) robustly detecting convergence.

Our approach has connections with sparse regression.

However, there is a key difference between the two methods: in

sparse regression the basis functions are chosen a priori by the

designer and the sparsity is enforced by 𝐿1 regularization. In

contrast, we automatically find the bases which considerably

increases the flexibility and applicability of our approach as

compared to sparse regression.

The above discussions revolve around GPs, but other

emulation methods struggle with extrapolation as well. For

instance, if a random forest or an NN is trained to emulate the

simple function 𝑦(𝑥) = 2 sin(3𝑥) over 𝑥 ∈ [−2𝜋, 2𝜋] ,

neither of them can produce accurate predictions at 𝑥 = 3𝜋.

We close this section by a short discussion on a relevant

concept known as generalization. A typical supervised learning

procedure in machine learning or statistics involves estimating

some model parameters while minimizing the generalization

error of the model. This error is calculated by evaluating the

model’s performance on some test data assumed to possess the

same distributional characteristics as the training data [1, 7]. This

procedure gives rise to the so-called i.i.d. assumptions which

imply that the training and test data assume similar supports. In

this paper, our goal is to make accurate predictions outside of the

training support without using any test data. The idea and its

underlying assumptions are further discussed in Sec. 3

The rest of the paper is organized as follows. In Sec. 2 we

provide some background on GPs and EP. In Sec. 3, we introduce

our approach and elaborate on its advantages, underlying

assumptions, and convergence mechanism. We test the

capabilities of our approach on some analytical examples (with

and without noise) in Sec. 4. An engineering application on

materials modeling is studied in Sec. 4.2. We summarize our

contributions and provide future research directions in Sec. 5.

2 TECHNICAL BACKGROUND

2.1 EMULATION WITH GAUSSIAN PROCESSES
In this section, we describe how GP emulators are fitted to a

training dataset. The data can be noisy and is obtained from

either computer simulations or laboratory experiments. Note that

in practice the data are scaled or normalized to ensure numerical

stability.

Denote the output and inputs in the training data by,

respectively, 𝑦 and 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑑]𝑇 where 𝒙 ∈ ℝ𝑑 .

Assume the input-output relation is a single realization from the

random process 𝜂(𝒙):

𝜂(𝒙) = 𝒇(𝒙)𝜷 + 𝜉(𝒙), (1)

Fig. 2 Flowchart of our

approach for extrapolation: We

begin by learning a GP without

any parametric bases. A large

dataset is then generated with this

GP and used in EP to find some

bases. Afterwards, we retrain the

GP while using the bases found by

EP. This process is continued until

GP starts to learn noise.

Copyright © 2020 ASMEV11AT11A004-2

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

where 𝒇(𝒙) = [𝑓1(𝒙), … , 𝑓ℎ(𝒙)] are some pre-determined set

of bases (e.g., sin(𝑥1) , log(𝑥1 + 𝑥2) , 𝑥1
2𝑥2, …), 𝜷 =

[𝛽1, … . , 𝛽ℎ]𝑇 are unknown coefficients, and 𝜉(𝒙) is a zero-

mean GP. 𝜉(𝒙) is completely characterized with its parametric

covariance function, 𝑐(∙,∙), given by:

𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝜎2𝑟(𝒙, 𝒙′), (2)

where 𝜎2 is the process variance and 𝑟(⋅) is the correlation

function. Many parametric correlation functions have been

developed for GPs [3, 4, 12-16] with the Gaussian correlation

function being the most commonly used one:

𝑟(𝒙, 𝒙′) = exp{− ∑ 10𝜔𝑖(𝑥𝑖 − 𝑥𝑖
′)2𝑑

𝑖=1 } , (3)

where 𝝎 = [𝜔1, … , 𝜔𝑑]𝑇 , −∞ < 𝜔𝑖 < ∞ are the roughness or

scale parameters. In practice, the ranges are changed to −10 <
𝜔𝑖 < 6 for numerical stability. The collection of 𝜎2 and 𝝎
are called the hyperparameters of 𝜉(𝒙).

Following the assumption in Eq. (1) and given the 𝑛

training pairs of (𝒙(𝑖), 𝑦(𝑖)) , GP emulation requires finding a

point estimate for 𝜷 , 𝝎 , and 𝜎2 via either MLE or cross-

validation (CV). Alternatively, Bayes’ rule can be employed to

find the posterior distributions if there is some prior knowledge

on these parameters. In this paper, the MLE approach is

employed as it provides a high predictive power while

minimizing the computational costs [12, 13, 17-20].

The MLE estimates of 𝜷 , 𝝎 , and 𝜎2 maximize the

likelihood that the 𝑛 training data are generated by 𝜂(𝒙), that

is:

[�̂�, �̂�2, �̂�] =
argmax

𝜷, 𝜎2, 𝝎
|2𝜋𝜎2𝑹|

−1
2 ×

exp (
−(𝒚 − 𝑭𝜷)𝑇(𝜎2𝑹)−1(𝒚 − 𝑭𝜷)

2
) ,

which can be written as:

[�̂�, �̂�2, �̂�] =
argmin

𝜷, 𝜎2, 𝝎

𝑛

2
𝑙𝑜𝑔(𝜎2) +

1

2
log(|𝑹|) +

1

2𝜎2
(𝒚 − 𝑭𝜷)𝑇𝑹−1(𝒚 − 𝑭𝜷), (4)

where log(∙) is the natural logarithm, |∙| indicates the

determinant operator, 𝒚 = [𝑦(1), … , 𝑦(𝑛)]
𝑇
 is the 𝑛 × 1 vector

of outputs in the training data, 𝑹 is the 𝑛 × 𝑛 correlation

matrix with (𝑖, 𝑗)𝑡ℎ element 𝑹𝑖𝑗 = 𝑟(𝒙(𝑖), 𝒙(𝑗)) for 𝑖, 𝑗 =

1, … , 𝑛 , and 𝑭 is the 𝑛 × ℎ matrix with (𝑘, 𝑙)𝑡ℎ element

𝑭𝑘𝑙 = 𝑓𝑙(𝒙(𝑘)) for 𝑘 = 1, … . , 𝑛 and 𝑙 = 1, … , ℎ . Setting the

partial derivatives with respect to 𝜷 and 𝜎2 to zero yields:

�̂� = [𝑭𝑇𝑹−1𝑭]−1𝑭𝑇𝑹−1𝒚, (5)

�̂�2 =
1

𝑛
(𝒚 − 𝑭�̂�)

𝑇
𝑹−1(𝒚 − 𝑭�̂�). (6)

�̂� and �̂�2 are functions of 𝝎 (since 𝑹 is a function of

𝝎). Plugging these estimates in Eq. (4) and eliminating the

constants results in:

�̂� =
argmin

𝝎
𝑛𝑙𝑜𝑔(�̂�2) + log(|𝑹|) =

argmin
𝝎

𝐿. (7)

By numerically minimizing 𝐿 in Eq. (7) one can find �̂�

and, subsequently, obtain �̂� and �̂�2 using equations (5) and

(6). Many heuristic global optimization methods such as genetic

algorithms [21], pattern searches [22, 23], and particle swarm

optimization [24] have been previously employed to solve Eq.

(7). However, gradient-based optimization techniques are

commonly preferred due to their ease of implementation and

superior computational efficiency [2, 13, 25]. To guarantee

global optimality in this case, the optimization is done numerous

times with different initial guesses.

Upon completion of MLE, the following closed-form

formula can be used to predict the response at any 𝒙∗:

𝔼[𝑦∗] = 𝒇(𝒙∗)�̂� + 𝒈𝑇(𝒙∗)𝑽−1(𝒚 − 𝑭�̂�), (8)

where 𝔼 denotes expectation, 𝒇(𝒙∗) = [𝑓1(𝒙∗), … , 𝑓ℎ(𝒙∗)] ,

𝒈(𝒙∗) is an 𝑛 × 1 vector with 𝑖𝑡ℎ element 𝑐(𝒙(𝑖), 𝒙∗) =

�̂�2𝑟(𝒙(𝑖), 𝒙∗) , and 𝑽 is the covariance matrix with (𝑖, 𝑗)𝑡ℎ

element �̂�2𝑟(𝒙(𝑖), 𝒙(𝑗)) . The posterior covariance between the

responses at the two inputs 𝒙∗ and 𝒙′ reads:

𝑐𝑜𝑣(𝑦∗, 𝑦′) = 𝑐(𝒙∗, 𝒙′) − 𝒈𝑇(𝒙∗)𝑽−1𝒈(𝒙′) +
𝒉(𝒙∗)𝑇(𝑭𝑇𝑽−1𝑭)−1𝒉(𝒙′), (9)

where 𝒉(𝒙∗) = (𝒇𝑇(𝒙∗) − 𝑭𝑻𝑽−1𝒈(𝒙∗)).

Eq. (8) clearly demonstrates the reversion to the mean

property of GPs in extrapolation: As the Euclidean distance

between 𝒙∗ and the training data increases, the elements of

𝒈(𝒙∗) approach zero. When 𝒈(𝒙∗)~𝟎, the posterior mean only

depends on 𝒇(𝒙∗)�̂�. If an incorrect or incomplete set of bases is

used in training, a GP returns inaccurate predictions when

extrapolating.

Finally, we note that GPs can address noise and smooth the

data (i.e., avoid interpolation) via the so-called nugget or jitter

parameter, 𝛿 . To this end, 𝑹 is replaced with 𝑹𝛿 = 𝑹 +
𝛿𝑰𝑛×𝑛. If 𝛿 is used, the estimated (stationary) noise variance in

the data would be 𝛿�̂�2 . We have recently developed an

automatic method to robustly detect and estimate noise based on

MLE and leave-one-out CV [13].

2.2 EVOLUTIONARY PROGRAMMING
Biological structures that are more successful in grappling

with their environment (i.e., they are fitter) survive and

reproduce at a higher rate. In other words, over time the fitness

of a living individual begets its structure through natural

selection, genetic crossover, and mutation. Realizing computer

models as complex structures, many scholars have applied the

Copyright © 2020 ASMEV11AT11A004-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

notion of evolution to programming. This perspective on

computer modeling has fathered an active field of research

known as EP. The terms genetic programming [26, 27], inverse

system identification [28], grammatical evolution [29], symbolic

regression [30], and structure learning [31] are very similar lines

of research.

Since the early 1990s, EP and its many variants have been

exercised to find a symbolic relation between the input(s) and

output of a training dataset. As illustrated in Fig. 3, the essential

idea behind EP is to first build an initial population of simple

solutions known as individuals. Then, these solutions are

iteratively evolved to build more complex individuals that

hopefully better relate the inputs and output based on some

predefined criterion. This iterative process is continued until

convergence.

Koza provided the first systematic approach for using EP in

symbolic regression and robot planning. In his book [26], Koza

models potential solutions to these problems as trees where

nodes host primitive operations and functions while leaves store

variables. New solutions are found by combining these trees

together or randomly changing parts of them. Building trees is

continued until at least one of them can faithfully interpolate the

available data (in regression) or satisfy the governing equation

of the system (in robot planning). Since Koza’s seminal work,

EP and its many variants have been successfully used to, e.g.,

automatically find the governing ordinary differential equation

of a dynamical system such as a mass-spring oscillator or a

double pendulum [28, 30, 32]. EP has also been recently

employed to find simple partial differential equations that relate

the dependent and independent variables in a training dataset

[33-37].

We conclude this subsection with three important notes.

Firstly, EP has also been used to find the optimum NN

architecture [38-41] by adjusting the value of the weights,

turning the hidden units on/off, or evolving the number of hidden

layers and their units. However, this evolutionary approach for

fitting NNs is no longer practiced as it is inferior to the current

fitting practices that integrate efficient regularization,

backpropagation, and mini-batch stochastic gradient [1].

Secondly, EP is fundamentally different than sparse regression

[7, 42-46]. While in EP the input-output relation is discovered,

in sparse regression a specific parametric form is assumed, and

its parameters are estimated using the data. Thirdly, applications

of EP have been primarily limited to problems of low

dimensionality/complexity since EP tends to overfit the data by

generating extremely complicated expressions. Although

regularization alleviates this issue, the proposed penalty

functions have been mostly ad hoc (e.g., based on the physics of

the problem).

3 OUR APPROACH FOR EXTRAPOLATIVE
EMULATION

Our underlying assumption is that there is a set of free-form

parametric bases that can model the data source reasonably well.

Consequently, if we can find these bases via some training data

over a region, we can do predictions outside of that region. In

this sense, our approach has the same spirit as prior works on

symbolic regression and system identification (see Sec. 2.2 for a

short review). However, there are four primary differences.

Firstly, we propose a systematic and general method based on

MLE that addresses the overfitting issue of EP. Secondly, the

computational efficiency, robustness, and convergence rate of

our approach is quite high. Thirdly, we can validate and correct

the constants/coefficients found by EP. Lastly, our approach

provides prediction intervals and is applicable to both noisy and

noiseless data. Having stated the assumptions and main

contributions, we next provide the details of our approach.

Our approach is motivated by the formulation in Eq. (1) and

its direct consequence on the GP predictor in Eq. (8). Generally,

no parametric mean function is employed in GP emulation, i.e.,

𝒇(𝒙)𝜷 = ∑ 𝛽𝑖𝑓𝑖(𝒙)ℎ
𝑖=1 = 𝛽 in Eq. (1). This is a valid

assumption for interpolation purposes because the second term

on the right-hand side (RHS) of Eq. (8) can emulate a

Fig. 3 Evolutionary programming for regression:

Potential solutions are represented as trees where nodes

host primitive operations and functions while leaves store

variables. New solutions are found by combining these

trees together or randomly changing parts of them.

Building trees is continued until at least one of them can

faithfully interpolate the available data.

Copyright © 2020 ASMEV11AT11A004-4

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

significantly wide range of relations between 𝒙 and 𝑦 .

However, two interesting observations are made if the set

𝒇(𝒙) = [𝑓1(𝒙), … , 𝑓ℎ(𝒙)] is chosen such that it contains some

bases that adequately regress or interpolate the training data.

Firstly, the second term on the RHS of Eq. (8) will either be a

constant (regardless of 𝒙∗) or resemble a non-stationary noise

source. Secondly, the 𝛽 ’s corresponding to the insignificant

bases (if there are any) will be estimated as zero. We elaborate

on these observations below.

In Eq. (1), assume 𝒇(𝒙) is chosen such that 𝒇(𝒙)𝜷 can

regress or interpolate the training data very well. Then:

• These 𝜷 can be estimated systematically and efficiently

with MLE, see Eq. (5). In particular, if there are some

redundant bases their corresponding �̂�’s will be estimated

as zero.

• �̂� = [�̂�1, … , �̂�𝑑]𝑇 in Eq. (7) will be all either very small or

very large. In particular, if the MLE is performed over

−10 < 𝜔𝑖 < 6 , the results of Eq. (7) will be �̂�1 = �̂�2 =
… = �̂�𝑑 = 𝑠 where 𝑠 = −10 or 𝑠 = 6.

The effect on �̂� can be explained as follows. If the training data

is noisy but the GP is forced to interpolate (i.e., nugget is not

used), 𝜉(𝒙) in Eq. (1) will (wrongly) learn noise. Since there

are no correlations in noise, �̂�1 = �̂�2 = … = �̂�𝑑 = 6 to force

the spatial correlations of 𝜉(𝒙) to die very fast along all

directions in the input space. However, if the nugget is used and

systematically estimated via MLE, 𝜉(𝒙) will (correctly) learn

the noise mean. Since we have assumed 𝒇(𝒙)�̂� regresses the

training data very well, the noise mean is zero. Hence, 𝜉(𝒙) will

be zero everywhere which indicates that there is a very high

correlation between any two points in the input space. Such high

correlations can be achieved by �̂�1 = �̂�2 = … = �̂�𝑑 = −10.

Fig. 4 illustrates these results in 1𝐷 . If the training data is

noiseless, 𝒇(𝒙)�̂� interpolates the data accurately. In this case,

𝜉(𝒙) will be zero everywhere and �̂�1 = �̂�2 = … = �̂�𝑑 =
−10 . Thus, the estimate on �̂� provides a clear signal on

whether 𝒇(𝒙)�̂� regresses or interpolates the data accurately;

regardless of whether the data is noisy or not.

The above discussions assumed that 𝒇(𝒙) are given. In high

dimensions or complex problems, it is impractical to guess these

bases or build a very large set of bases and hope that MLE can

filter out the redundant ones. As demonstrated in Fig. 2, we find

these bases with EP. In particular, given a training dataset, we

first fit a GP without any parametric mean, i.e., 𝒇(𝒙)𝜷 =
∑ 𝛽𝑖𝑓𝑖(𝒙)ℎ

𝑖=1 = 𝛽 . This GP is accurate as long as we are

interpolating. So, we use this GP to generate a new training

dataset over the interpolation region. This new dataset is then

used in EP to find 𝒇(𝒙), i.e., the set of parametric bases. Next,

we refit the GP but this time use the newly found 𝒇(𝒙). This

process is continued until convergence, i.e., until �̂�1 = �̂�2 =
… = �̂�𝑑 = 𝑠 where 𝑠 = −10 or 𝑠 = 6.

It is important to note that EP generates a population of

solutions, i.e., many sets of 𝒇(𝒙)’s. In our implementation, we

only choose the best individual for the next iteration and employ

it in GP training. Other approaches may be exercised instead. For

example, one could use the union of the top 10 individuals to

increase the diversity of bases in 𝒇(𝒙) and let MLE determine

their relevance in the next iteration of our approach.

Fig. 4 Learning noise with GPs: (a) A noisy dataset that follows a

normal distribution. (b) Effeect of 𝜔 on 𝑟(𝑥, 𝑥′) in 1D, see also Eq.

(3). When interpolating/regressing the noisy data, a very large/small

𝜔 is needed. A GP with 𝜔 = −4 (𝜔 = 4) can regress (interpolate)

the data shown in (a). It is assumed that 𝑥 is scaled to [0, 1].

Table 1 Analytical examples: Our examples have combinations of polynomials, trigonometric functions, logarithm, and exponentiation.

EX ID Function 𝑴𝒊𝒏(𝒙) 𝑴𝒂𝒙(𝒙) 𝑹𝒂𝒏𝒈𝒆(𝑦)

1 𝑦(𝑥) = 𝑥1
2 − 𝑥1 + 5 sin(3𝑥1) + 1 −4 5 27.595

2 𝑦(𝒙) = 𝑥1
2 + 3𝑥1 − exp(𝑥1) + cos(𝑥1) + 4 −4 5 111.333

3 𝑦(𝒙) = (𝑥1
2 − 10)/(𝑥2

2 + 𝑥2 + 2) [−4.5, −5] [6, 7] 20.324

4 𝑦(𝒙) = 𝑥1𝑥2 + 𝑥2
2 + 5 sin(3𝑥1) + 1 [−4, −4] [−1, 2] 42.498

5 𝑦(𝒙) = 𝑥1
2 + cos(𝑥2) + log(|𝑥3|) + exp(𝑥2) + 4 [−1, −2, 0.25] [4, 3, 6] 36.888

6 𝑦(𝒙) = 𝑥2𝑥3 + 𝑥1 − 𝑥2 + 3 sin(2𝑥1) − 2 cos(𝑥3) − 5 [−2, −6, −2] [4, 2, 3] 37.164

7 𝑦(𝒙) = 𝑥1𝑥2𝑥3 + 𝑥2
2 + 𝑥2 + 5 sin(3𝑥1) + sin(𝑥3) + 1 [−1, −2, −1] [3, 2, 5] 62.265

8 𝑦(𝒙) = 𝑥1𝑥2 − 𝑥3𝑥4 + 𝑥1 − 2sin(𝑥1𝑥3) + 2 [−4, −3, 3.5, −5] [2, 4, 6, 4] 76.568

Copyright © 2020 ASMEV11AT11A004-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

The original training dataset is not directly used in EP

because (𝑖) EP generally overfits if the dataset is noisy. GP

allows to automatically detect and remove noise. (𝑖𝑖) The

number of training data might be too small to be directly used in

EP. This would lead to overfitting in EP as well. (𝑖𝑖𝑖) We

normally don’t have any control over the spatial distribution of

the original training data. Using GP to generate data allows to

homogeneously or heterogeneously distribute them (e.g., dense

in some regions while sparse in other regions). As we show in

Sec. 4.2, this helps in finding highly complex bases.

Note that EP tends to overfit even with noiseless and

informative data made by GP. Hence, once a set of bases are

found by EP, we refit the GP to employ MLE and determine if

any of the bases is redundant. We believe this approach is more

robust, efficient, and flexible than exercising ad-hoc

regularization in EP. For instance, EP produces deeply nested

functions such as sin(𝑠𝑖𝑛(𝑐𝑜𝑠(…))) in many of our examples

in Sec. 4.1. Once these functions are used in GP training, the

corresponding 𝛽’s are consistently estimated as zero by MLE.

4 VALIDATION
In this section, we apply our approach to a set of analytical

examples in Sec. 4.1 and an engineering one in Sec. 4.2. In all

the examples we use the Python package DEAP [27] for EP and

train the GPs following the algorithm in [13]. We initialize

DEAP with a set of primitive functions and let the algorithm

evolve them to build more complex functions. Our primitive set

includes the following functions and operations:

log(|∙|) , exp(∙) , +, ×, −,÷, sin(∙), and cos(∙) . In all of our

examples, the population size, maximum number of generations,

probability of crossover, and mutation probability are set to,

respectively, 1200, 350, 0.3, and 0.4. The breaking parameter

is set to 50, i.e., the evolution stops if the best individual does

not improve after 50 generations. The fitness function in DEAP

is set to minimize the root mean squared errors. These errors are

calculated over the data that GP generates at each iteration of our

approach.

4.1 ANALYTICAL EXAMPLES
As shown in Table 1, the analytical functions we study are

quite complex: many of them have high frequency or non-trivial

terms that render guess-based function discovery for

extrapolation very difficult. We study these examples in two

scenarios. In the first one, the original training data is noiseless;

allowing us to directly compare the performance of our approach

to EP while changing the size of the training data. In the second

scenario, the training data is noisy, so we only use our approach

because EP overfits noisy data. We use Sobol sequence [47, 48]

for taking samples from each function. Sample-to-sample

variations are not observed (and thus not reported) in our

simulations because (𝑖) the sample sizes are sufficiently large,

and (𝑖𝑖) Sobol sequence generates high quality space-filling

designs.

Table 2 summarizes the results in the first scenario and

indicates that, in the absence of noise, both approaches are quite

efficient. In Ex 6, EP is unable to find the high frequency term

sin(2𝑥1) but increasing the size of the training data alleviates

this issue. In Ex 7, however, EP cannot learn the sin(𝑥3) term

even with many data points. Instead of sin(𝑥3) , EP wrongly

finds other terms that are generally highly nonlinear and change

with each time the algorithm is run. Two sample extra terms

found by EP in Ex 7 are 𝑥1 + cos(𝑥1
2) and 𝑥1 + (cos(2𝑥1) +

cos(𝑥1
2))sin (𝑥1). This error in Ex 7 is primarily because −1 ≤

sin(𝑥3) ≤ 1 while 𝑦(𝒙) changes in a much larger range. To

Table 2 Results on analytical examples: Our approach (GP+EP)

and EP can find the true function form in most cases. In Ex 6, EP

missed sin(2𝑥1) with small training data. In Ex 7, EP could not

recover the sinusodal term sin(𝑥3) on its own. Our approach

never produces redundent bases because of MLE verification.

However, EP wrongly produces extra terms if it cannot find the

exact function form. Our simulation results are not affected by the

randomness of the original training data. This is primarily due to

the data size (which is at least 100𝑑) and the space-filling

property of Sobol sequence.

Ex ID

(dim)

Size of Original

Training Data

Exact Form Recovered?

EP GP+EP

1

(1)

100 ∗ 𝑑 Yes Yes

200 ∗ 𝑑 Yes Yes

300 ∗ 𝑑 Yes Yes

2

(1)

100 ∗ 𝑑 Yes Yes

200 ∗ 𝑑 Yes Yes

300 ∗ 𝑑 Yes Yes

3

(2)

100 ∗ 𝑑 Yes Yes

200 ∗ 𝑑 Yes Yes

300 ∗ 𝑑 Yes Yes

4

(2)

100 ∗ 𝑑 Yes Yes

200 ∗ 𝑑 Yes Yes

300 ∗ 𝑑 Yes Yes

5

(3)

100 ∗ 𝑑 Yes Yes

200 ∗ 𝑑 Yes Yes

300 ∗ 𝑑 Yes Yes

6

(3)

100 ∗ 𝑑 No Yes

200 ∗ 𝑑 Yes Yes

300 ∗ 𝑑 Yes Yes

7

(3)

100 ∗ 𝑑 No Yes

200 ∗ 𝑑 No Yes

300 ∗ 𝑑 No Yes

8

(4)

100 ∗ 𝑑 Yes Yes

200 ∗ 𝑑 Yes Yes

300 ∗ 𝑑 Yes Yes

Copyright © 2020 ASMEV11AT11A004-6

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

minimize the reconstruction error, EP focuses on the polynomial

terms as well as sin(3𝑥1) which has a higher amplitude.

As opposed to EP, our approach which integrates GP and EP

can consistently find the true underlying function. We iterate

between GP and EP per Fig. 2 and stop once �̂� converge. In all

cases in Table 2, we generate 1000 data points with GP for EP

and iterate between them at least twice to arrive at �̂�1 = �̂�2 =
… = �̂�𝑑 = −10. Note that, our algorithm always ends with GP

where MLE is carried out. At each iteration, MLE validates the

bases found by EP in the previous iteration. In some of our

examples, EP misidentifies some of the coefficients or includes

some extra bases. These inaccuracies are all corrected by MLE

in the next iteration. This is shown for Ex 1 in Fig. 5 where in

the final solution the coefficient of sin(3𝑥1) is incorrectly

estimated as 3 instead of 5 . When the bases 𝑥1
2, 𝑥1 , and

sin(3𝑥1) are used in GP emulation in the next iteration, the

coefficient of sin(3𝑥1) is corrected by MLE. Note that we do

not include the constants found by EP in GP as bases because we

always let MLE determine if a constant term is required. This is

done by always including a constant number such as 1 in the set

of bases.

Table 3 summarizes the results in the second scenario where

the original training data is noisy. EP, on its own, overfits noisy

data and rarely obtains the exact form.. We test two noise levels

to assess the sensitivity of our approach to noise variance. As the

tabulated data indicate, we can successfully recover the true

function forms given only noisy data. In this case, GP

automatically filters out the noise using the nugget parameter.

Hence, the data that it generates for EP at each iteration is

noiseless.

4.2 EXTRAPOLATION FOR MATERIALS MODELING
Unlike the examples in Sec. 4.1, in real-world applications

the exact relation between the independent and dependent

variables is unknown. In this subsection we study how our

algorithm performs in these scenarios.

Establishing microstructure-property relations plays a key

role in materials design and, thereby, in many industrial and

technological sectors [49-51]. Here, we examine the case of

learning the constitutive law of a 2𝐷 hyperelastic composite

microstructure. The constitutive law of our microstructure is

unknown and thus numerical methods (e.g., finite element

analysis, FEA) are required to find the response of the

Fig. 5 Evolution of a solution in evolutionary programming: In each iteration of our approach, EP is used to find a parametric function that can

interpolate or regress the data generated via GP. The obtained solution is then validated via MLE in the next iteration. This figure corresponds to the

first iteration in Ex 1 (no noise, 100 original training samples). The final solution does not match the true function form because the coefficient of

sin(3𝑥1) is not 5. The MLE corrects this issue in the next iteration.

Table 3 Results on analytical examples with noise: EP overfits

noisy data if used alone. So, we only use GP+EP which obviates ad-

hoc regularization of EP. We never get extra terms since MLE

associates a coeficient (i.e., 𝛽) of zero to redundent bases. The added

noise to the data is zero-mean normal with variance as given in the

table. Our simulation results are not affected by the randomness of

the original training data. This is primarily due to the data size (which

is 400𝑑) and the space-filling property of Sobol sequence. The

iteration numbers do not include the first time that GP is fitted where

no parametric function is used.

Ex ID

(dim)

Noise

Variance

Exact Form Recover? Iterations

(EP+GP) EP EP + GP

1 (1)
0.252 No Yes 1

22 No Yes 2

2 (1)
0.22 No Yes 1

1.52 No Yes 1

3 (2)
0.252 No Yes 1

22 No Yes 1

4 (2)
0.22 No Yes 1

22 Yes Yes 1

5 (3)
0.252 No Yes 2

22 No Yes 3

6 (3)
0.22 Yes Yes 1

22 No Yes 1

7 (3)
0.12 No Yes 2

1.52 No Yes 1

8 (4)
0.22 No Yes 2

22 No Yes 2

Ex ID

(dim)

Noise

Variance

Exact Form Recover? Iterations

(EP+GP)EP EP + GP

1 (1)
0.252 No Yes 1

22 No Yes 2

2 (1)
0.22 No Yes 1

Copyright © 2020 ASMEV11AT11A004-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

microstructure to any applied strains. The high computational

costs of numerical methods hinder designing multiscale

materials whose fine-scale behavior is governed by our

microstructure. Hence, the goal is to find the constitutive law

and, in turn, be able to predict the microstructure behavior

(stored potential in our case) under any applied strains.

We take a data-driven approach to achieve this goal. In

particular, a training dataset of strains-potential is built by

deforming the microstructure under various strain states via

FEA. The dataset has a total of 512 samples and its inputs and

output are, respectively, principal strains (휀1, 휀2) and the stored

potential (𝜙) . As demonstrated in Fig. 6(a), the data are

heterogeneously distributed in the input space. The data have a

small amount of noise that is primarily due to numerical

instabilities, excessive mesh distortion, and round off errors

experienced in FEA. The reader is referred to [52] for more

technical details on how the data is generated.

We divide this dataset into three mutually exclusive and

collectively exhaustive sets for training, interpolation testing,

and extrapolation testing with sample sizes of, respectively,

412, 50, and 50. Then, we fit an emulator to the training set and

use it to predict the stored potential in the other two sets. To

evaluate the performance of our approach (method 1), we

compare it against three other emulation strategies: a polynomial

model (method 2) a GP without any parametric mean (method

3), and a feed forward NN (method 4).

With our method, in each iteration, we generate

heterogeneously distributed data with GP for EP. In particular,

we first build a space-filling design of size 500 over the
(휀1, 휀2) space with Sobol sequence and then augment this set

with 100 data points close to 휀1 = 휀2 = 0 to capture the small

strain behavior well. In each stage, we ensure the points are

located in the strain space such that GP interpolates. The reason

for placing more points close to the origin is that with large

strains, 𝜙 is large so EP finds bases that are primarily predictive

of the large strain behavior. To help EP capture the small strain

behavior, we generate more data points that correspond to that

region, see Fig. 6(b).

We evaluate these four methods using two criteria: (1) The

performance on the interpolation and extrapolation test sets, and

(2) the physical constraints that the resulting models should

satisfy. Table 4 summarizes the performance of each method

based on the first criteria and indicates that our method and NN

outperform other methods. These results are consistent with Fig.

6(c)-(f) where only our method and NN produce models with

physically acceptable trends over the strain ranges shown in Fig.

6(a). In particular, in a hyperelastic material, such as rubber, the

potential is zero in the absence of any strains and monotonically

increases as the strain magnitude grows [53]. These properties

are only preserved consistently with our approach and NN where

the derivative of 𝜙 with respect to either 휀1 or 휀2 is positive

over the strain space of Fig. 6(a) and the potential at (0,0) is

equal to 0.

As opposed to NN which is a black box, our approach

provides (1) an analytical expression for the dynamics of the

model that can be used for inspection and design, (2) prediction

Fig. 6 Extrapolation for materials modeling: (a) The training data. 휀1 and 휀2 are the principal strains and 𝜙 is the stored potential in the composite

microstructure upon deformation. The green, red, and blue data points denote, respectively, the training set, interpolation test set, and extrapolation test

set. (b) Data generated with GP for EP in one of the iterations of our appraoch. Colors indicate the (c) Emulation via cross-validated polynomials,

(d) Emulation via GP (e) Emulation using our approach. The light blue surfaces mark the 95% prediction intervals. (f) Emulation with cross validated

NN. The NN model is plotted over a larger strain range to indicate its shortcoming in excessive extrapolation. This behavior is not observed in our

appraoch.

Copyright © 2020 ASMEV11AT11A004-8

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

intervals which are useful in sequential sampling and assessing

the reliability of the extrapolation and interpolation, and (3)

faithful extrapolations over large ranges (as shown in Fig. 6(e)

extrapolation with NN is inaccurate for very large strains).

5 CONCLUSIONS AND FUTURE WORKS
In this paper, we introduced a method for extrapolative

emulation. Our underlying assumption was that there is a set of

free-form parametric functions that can emulate the data source

reasonably well. The by-product of this assumption is that if we

can find these bases via some training data over a region, we can

do predictions outside of that region. To systematically and

efficiently find these bases, we introduced an approach by

integrating GPs with evolutionary programming. We start by

learning a GP without any parametric mean function. Then, a rich

dataset is generated by this GP and subsequently used in EP to

find some parametric bases. Afterwards, we retrain the GP while

using the bases found by EP. This retraining essentially allows to

validate and/or correct the discovered bases via maximum

likelihood estimation. By iterating between GP and EP we

robustly and efficiently find the underlying bases that can be

used for extrapolation.

We illustrated our approach with eight analytical problems

(with or without noise) where it performed better than EP alone.

We also studied an engineering example on finding the

constitutive law of a composite microstructure. The emulators

we found using our approach were more consistent with the

physics of the problem than those found by other approaches.

In our approach, we used a GP as an interphase between the

original data and EP. Other methods can be used in place of GPs,

but care must be exercised because the chosen method must have

the capability of detecting overfitting and convergence. In the

engineering example, we verified our results by checking the

monotonicity constraint. A more rigorous and quantitative

validation procedure, perhaps by obtaining more data from FEA,

will be useful.

6 REFERENCES
1. Goodfellow, I., Y. Bengio, and A. Courville, Deep learning.

2016: MIT press.

2. Hassaninia, I., et al., Characterization of the Optical

Properties of Turbid Media by Supervised Learning of

Scattering Patterns. Sci Rep, 2017. 7(1): p. 15259.

3. Bostanabad, R., et al., Uncertainty quantification in

multiscale simulation of woven fiber composites. Computer

Methods in Applied Mechanics and Engineering, 2018.

338: p. 506-532.

4. Bostanabad, R., et al., Globally Approximate Gaussian

Processes for Big Data With Application to Data-Driven

Metamaterials Design. Journal of Mechanical Design,

2019. 141(11).

5. Rasmussen, C.E., Gaussian processes for machine

learning. 2006.

6. Chen, T. and C. Guestrin. Xgboost: A scalable tree boosting

system. in Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data

mining. 2016. ACM.

7. Hastie, T., et al., The elements of statistical learning. Vol.

2. 2009: Springer.

8. Du, X. and W. Chen, Sequential Optimization and

Reliability Assessment Method for Efficient Probabilistic

Design. Journal of Mechanical Design, 2004. 126(2): p.

225-233.

9. Bostanabad, R., et al., Multiscale Simulation of Fiber

Composites with Spatially-Varying Uncertainties, in

Uncertainty Quantification in Multiscale Materials

Modeling. 2019, Elsevier.

10. Ba, S. and V.R. Joseph, Composite Gaussian process

models for emulating expensive functions. The Annals of

Applied Statistics, 2012: p. 1838-1860.

11. Zhang, N. and D.W. Apley, Fractional brownian fields for

response surface metamodeling. Journal of Quality

Technology, 2014. 46(4): p. 285.

12. Plumlee, M. and D.W. Apley, Lifted Brownian Kriging

Models. Technometrics, 2017. 59(2): p. 165-177.

13. Bostanabad, R., et al., Leveraging the nugget parameter for

efficient Gaussian process modeling. International Journal

for Numerical Methods in Engineering, 2018. 114(5): p.

501-516.

14. Zhang, W., et al., A numerical Bayesian-calibrated

characterization method for multiscale prepreg preforming

simulations with tension-shear coupling. Composites

Science and Technology, 2019. 170: p. 15-24.

15. Cressie, N., The origins of kriging. Mathematical geology,

1990. 22(3): p. 239-252.

16. Stein, M.L., Interpolation of spatial data: some theory for

kriging. 2012: Springer Science & Business Media.

17. Gramacy, R.B. and D.W. Apley, Local Gaussian process

approximation for large computer experiments. Journal of

Computational and Graphical Statistics, 2015. 24(2): p.

561-578.

18. MacDonald, B., P. Ranjan, and H. Chipman, GPfit:

AnRPackage for Fitting a Gaussian Process Model to

Deterministic Simulator Outputs. Journal of Statistical

Software, 2015. 64(12).

19. Ranjan, P., R. Haynes, and R. Karsten, A computationally

stable approach to Gaussian process interpolation of

deterministic computer simulation data. Technometrics,

2011. 53(4): p. 366-378.

Table 4 Mean squared error (MSE): Our method outperforms other

approaches in predicting the test data.

Method
MSE:

Training set

MSE:

Interpolation test set

MSE:

Extrapolation test set

Polynomial 0.112 0.370 0.644

GP Only 0.116 0.361 0.417

Neural

Network
0.114 0.355 0.386

EP + GP 0.116 0.352 0.376

Copyright © 2020 ASMEV11AT11A004-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

20. Sacks, J., S.B. Schiller, and W.J. Welch, Designs for

Computer Experiments. Technometrics, 1989. 31(1): p. 41-

47.

21. Toal, D.J.J., N.W. Bressloff, and A.J. Keane, Kriging

hyperparameter tuning strategies. Aiaa Journal, 2008.

46(5): p. 1240-1252.

22. Audet, C. and J.E. Dennis Jr, Analysis of generalized

pattern searches. SIAM Journal on optimization, 2002.

13(3): p. 889-903.

23. Zhao, L., K. Choi, and I. Lee, Metamodeling method using

dynamic kriging for design optimization. AIAA journal,

2011. 49(9): p. 2034-2046.

24. Toal, D.J., et al., The development of a hybridized particle

swarm for kriging hyperparameter tuning. Engineering

optimization, 2011. 43(6): p. 675-699.

25. Tao, S., et al. Enhanced Gaussian Process Metamodeling

and Collaborative Optimization for Vehicle Suspension

Design Optimization. in ASME 2017 International Design

Engineering Technical Conferences and Computers and

Information in Engineering Conference. August 6–9, 2017.

Cleveland, OH: American Society of Mechanical

Engineers.

26. Koza, J.R., Genetic programming as a means for

programming computers by natural selection. Statistics and

computing, 1994. 4(2): p. 87-112.

27. Fortin, F.-A., et al., DEAP: Evolutionary algorithms made

easy. Journal of Machine Learning Research, 2012. 13(Jul):

p. 2171-2175.

28. Bongard, J. and H. Lipson, Automated reverse engineering

of nonlinear dynamical systems. Proceedings of the

National Academy of Sciences, 2007. 104(24): p. 9943-

9948.

29. Tsoulos, I.G. and I.E. Lagaris, Solving differential

equations with genetic programming. Genetic

Programming and Evolvable Machines, 2006. 7(1): p. 33-

54.

30. Schmidt, M. and H. Lipson, Symbolic regression of implicit

equations, in Genetic Programming Theory and Practice

VII. 2010, Springer. p. 73-85.

31. Koller, D. and N. Friedman, Probabilistic graphical

models: principles and techniques. 2009: MIT press.

32. Schmidt, M. and H. Lipson, Distilling free-form natural

laws from experimental data. science, 2009. 324(5923): p.

81-85.

33. Izzo, D., F. Biscani, and A. Mereta. Differentiable genetic

programming. in European Conference on Genetic

Programming. 2017. Springer.

34. Long, Z., et al., PDE-net: Learning PDEs from data. arXiv

preprint arXiv:1710.09668, 2017.

35. Atkinson, S., et al., Data-driven discovery of free-form

governing differential equations. arXiv preprint

arXiv:1910.05117, 2019.

36. Bassenne, M. and A. Lozano-Durán, Computational model

discovery with reinforcement learning. arXiv preprint

arXiv:2001.00008, 2019.

37. Jonckheere, M., et al., Uncovering differential equations

from data with hidden variables. 2019.

38. Stanley, K.O., et al., Designing neural networks through

neuroevolution. Nature Machine Intelligence, 2019. 1(1): p.

24-35.

39. Gauci, J. and K.O. Stanley, Autonomous evolution of

topographic regularities in artificial neural networks.

Neural computation, 2010. 22(7): p. 1860-1898.

40. Schmidhuber, J., Deep learning in neural networks: An

overview. Neural Networks, 2015. 61: p. 85-117.

41. Yao, X., Evolving artificial neural networks. Proceedings

of the IEEE, 1999. 87(9): p. 1423-1447.

42. Brunton, S.L., J.L. Proctor, and J.N. Kutz, Discovering

governing equations from data by sparse identification of

nonlinear dynamical systems. Proceedings of the National

Academy of Sciences, 2016. 113(15): p. 3932-3937.

43. Rudy, S.H., et al., Data-driven discovery of partial

differential equations. Science Advances, 2017. 3(4): p.

e1602614.

44. Schaeffer, H., Learning partial differential equations via

data discovery and sparse optimization. Proceedings of the

Royal Society A: Mathematical, Physical and Engineering

Sciences, 2017. 473(2197): p. 20160446.

45. Xiong, J., S.-Q. Shi, and T.-Y. Zhang, A machine-learning

approach to predicting and understanding the properties of

amorphous metallic alloys. Materials & Design, 2020. 187:

p. 108378.

46. Guyon, I. and A. Elisseeff, An introduction to variable and

feature selection. Journal of machine learning research,

2003. 3(Mar): p. 1157-1182.

47. Sobol', I.y.M., On the distribution of points in a cube and

the approximate evaluation of integrals. Zhurnal

Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1967.

7(4): p. 784-802.

48. Sobol, I.M., On quasi-Monte Carlo integrations.

Mathematics and Computers in Simulation, 1998. 47(2-5):

p. 103-112.

49. Bostanabad, R., et al., Stochastic microstructure

characterization and reconstruction via supervised

learning. Acta Materialia, 2016. 103: p. 89-102.

50. Bostanabad, R., W. Chen, and D.W. Apley,

Characterization and reconstruction of 3D stochastic

microstructures via supervised learning. J Microsc, 2016.

264(3): p. 282-297.

51. Bostanabad, R., et al., Computational microstructure

characterization and reconstruction: Review of the state-

of-the-art techniques. Progress in Materials Science, 2018.

95: p. 1-41.

52. Bessa, M.A., et al., A framework for data-driven analysis

of materials under uncertainty: Countering the curse of

dimensionality. Computer Methods in Applied Mechanics

and Engineering, 2017. 320: p. 633-667.

53. Belytschko, T., et al., Nonlinear finite elements for continua

and structures. 2013: John wiley & sons.

Copyright © 2020 ASMEV11AT11A004-10

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A004/6587033/v11at11a004-detc2020-22381.pdf by U

niversity of C
alifornia Irvine user on 04 April 2021

