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ABSTRACT 
Emulation plays an indispensable role in engineering design. 

However, the majority of emulation methods are formulated for 

interpolation purposes and their performance significantly 

deteriorates in extrapolation. In this paper, we develop a method 

for extrapolation by integrating Gaussian processes (GPs) and 

evolutionary programming (EP). Our underlying assumption is 

that there is a set of free-form parametric bases that can model 

the data source reasonably well. Consequently, if we can find 

these bases via some training data over a region, we can do 

predictions outside of that region. To systematically and 

efficiently find these bases, we start by learning a GP without 

any parametric mean function. Then, a rich dataset is generated 

by this GP and subsequently used in EP to find some parametric 

bases. Afterwards, we retrain the GP while using the bases found 

by EP. This retraining essentially allows to validate and/or 

correct the discovered bases via maximum likelihood estimation. 

By iterating between GP and EP we robustly and efficiently find 

the underlying bases that can be used for extrapolation. We 

validate our approach with a host of analytical problems in the 

absence or presence of noise. We also study an engineering 

example on finding the constitutive law of a composite 

microstructure. 

Keywords: Gaussian Processes, Evolutionary Programming, 

Extrapolation, Emulation, Maximum Likelihood Estimation.  

1 INTRODUCTION 
Emulation (aka metamodeling, surrogate modeling, or 

supervised learning) plays an instrumental role in engineering 

design. Over the past few decades, many emulation methods 

have been developed including deep neural networks (NNs) [1], 

Gaussian processes (GPs) [2-4], radial basis functions [5], 

boosted trees [6], random forests [7], and many more. Each of 
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these methods has its own pros and cons. However, they all share 

one limitation: Their performance deteriorates in extrapolation. 

As schematically illustrated in Fig. 1, our goal is to address this 

limitation by systematically integrating GPs and evolutionary 

programming (EP). 

GPs are one of the most common emulators and have been 

long used to replace expensive computer simulations or real 

experiments with inexpensive but accurate emulators. GPs have 

many attractive features that make them exceptionally desirable 

for computationally intensive design tasks such as robust- and 

reliability-based design [8], uncertainty quantification [3, 9], and 

Fig. 1 Extrapolation: (a) GPs are accurate in interpolation but reverse 

to their mean in extrapolation. (b) With our appraoch GPs can 

extrapolate the data. The figure corresponds to example 1 in Sec. 4.1. 
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topology optimization [4]. GPs attractive features primarily stem 

from their tractable conditional distributions, flexibility in 

emulating various functional forms (e.g., smooth, fluctuating, 

rough, …), ability to interpolate or regress, effective learning 

from small dataset, relatively low computational costs (esp. on 

small data), and ease of use.  

However, similar to many other emulation methods the 

predictive power of GPs significantly deteriorates in 

extrapolation. This behavior is known as reversion to the mean 

and is a by-product of the additive nature of a GP predictor. As 

we explain in Sec. 2, a GP predictor has two parts where the first 

part consists of a set of parametric mean functions while the 

second part relies on correlations between the query point and 

the training data. In extrapolation, these correlations become 

extremely weak, so the GP predictor relies primarily on the mean 

(hence the term reversion to the mean).  

Reversion to the mean in GPs has been studied previously 

and prior works can be divided into two primary categories. In 

the first approach, new covariance functions are designed that 

decay slower as the distance between a query point and the 

training data increases [10-12]. These approaches break down if 

the distance between the query points and the training data is 

large.  

In the second category, a set of parametric functions such as 

polynomials and trigonometric functions are employed in GP 

training. The significance of each function is then determined by 

their coefficients which are generally estimated via maximum 

likelihood estimation (MLE). A large (small) coefficient 

indicates the importance (irrelevance) of the corresponding basis 

function in explaining the relations between the inputs and 

outputs of the training data. If many basis functions are used in 

GP training, regularization must be exercised to avoid 

overfitting. The primary limitation of addressing reversion to the 

mean with this approach is that the basis functions are designed 

by humans who generally include simple and application-

dependent functions. We believe that our contributions address 

this shortcoming by automating the process of finding 

parametric mean functions that can have high degrees of 

nonlinearity and/or dimensionality. 

As depicted in Fig. 2, our approach relies on GP emulation 

and EP. Given a training dataset, we start by learning a GP 

without any parametric mean function. Then, a rich dataset is 

generated with this GP and subsequently used in EP to find some 

basis functions. Afterwards, we retrain the GP while using the 

bases found by EP. This process is continued until convergence. 

The original training dataset is not directly used in EP for three 

primary reasons. Firstly, its size might be too small to be directly 

used in EP. Secondly, EP generally overfits if the dataset is noisy. 

Thirdly, EP may require homogeneously or heterogeneously 

distributed data (e.g., dense in some regions while sparse in other 

regions) to find highly complex bases. In Sec.3, we elaborate on 

how the iterative process enables (𝑖) validating the bases found 

by EP and (𝑖𝑖) robustly detecting convergence. 

Our approach has connections with sparse regression. 

However, there is a key difference between the two methods: in 

sparse regression the basis functions are chosen a priori by the 

designer and the sparsity is enforced by 𝐿1 regularization. In 

contrast, we automatically find the bases which considerably 

increases the flexibility and applicability of our approach as 

compared to sparse regression.  

The above discussions revolve around GPs, but other 

emulation methods struggle with extrapolation as well. For 

instance, if a random forest or an NN is trained to emulate the 

simple function 𝑦(𝑥) = 2 sin(3𝑥)  over 𝑥 ∈ [−2𝜋, 2𝜋] , 

neither of them can produce accurate predictions at 𝑥 = 3𝜋.  

We close this section by a short discussion on a relevant 

concept known as generalization. A typical supervised learning 

procedure in machine learning or statistics involves estimating 

some model parameters while minimizing the generalization 

error of the model. This error is calculated by evaluating the 

model’s performance on some test data assumed to possess the 

same distributional characteristics as the training data [1, 7]. This 

procedure gives rise to the so-called i.i.d. assumptions which 

imply that the training and test data assume similar supports. In 

this paper, our goal is to make accurate predictions outside of the 

training support without using any test data. The idea and its 

underlying assumptions are further discussed in Sec. 3 

The rest of the paper is organized as follows. In Sec. 2 we 

provide some background on GPs and EP. In Sec. 3, we introduce 

our approach and elaborate on its advantages, underlying 

assumptions, and convergence mechanism. We test the 

capabilities of our approach on some analytical examples (with 

and without noise) in Sec. 4. An engineering application on 

materials modeling is studied in Sec. 4.2. We summarize our 

contributions and provide future research directions in Sec. 5. 

2 TECHNICAL BACKGROUND 

2.1 EMULATION WITH GAUSSIAN PROCESSES 
In this section, we describe how GP emulators are fitted to a 

training dataset. The data can be noisy and is obtained from 

either computer simulations or laboratory experiments. Note that 

in practice the data are scaled or normalized to ensure numerical 

stability.  

Denote the output and inputs in the training data by, 

respectively, 𝑦  and 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑑]𝑇  where 𝒙 ∈ ℝ𝑑 .

Assume the input-output relation is a single realization from the 

random process 𝜂(𝒙): 

𝜂(𝒙) = 𝒇(𝒙)𝜷 + 𝜉(𝒙), (1) 

Fig. 2 Flowchart of our 

approach for extrapolation: We 

begin by learning a GP without 

any parametric bases. A large 

dataset is then generated with this 

GP and used in EP to find some 

bases. Afterwards, we retrain the 

GP while using the bases found by 

EP. This process is continued until 

GP starts to learn noise. 
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where 𝒇(𝒙) = [𝑓1(𝒙), … , 𝑓ℎ(𝒙)]  are some pre-determined set

of bases (e.g., sin(𝑥1) , log(𝑥1 + 𝑥2) , 𝑥1
2𝑥2, …  ), 𝜷 =

[𝛽1, … . , 𝛽ℎ]𝑇  are unknown coefficients, and 𝜉(𝒙)  is a zero-

mean GP. 𝜉(𝒙) is completely characterized with its parametric 

covariance function, 𝑐(∙,∙), given by: 

𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝜎2𝑟(𝒙, 𝒙′), (2) 

where 𝜎2  is the process variance and 𝑟(⋅)  is the correlation

function. Many parametric correlation functions have been 

developed for GPs [3, 4, 12-16] with the Gaussian correlation 

function being the most commonly used one: 

𝑟(𝒙, 𝒙′) =  exp{− ∑ 10𝜔𝑖(𝑥𝑖 − 𝑥𝑖
′)2𝑑

𝑖=1 } , (3) 

where 𝝎 = [𝜔1, … , 𝜔𝑑]𝑇 , −∞ < 𝜔𝑖 < ∞ are the roughness or

scale parameters. In practice, the ranges are changed to −10 <
𝜔𝑖 < 6  for numerical stability. The collection of 𝜎2  and 𝝎
are called the hyperparameters of 𝜉(𝒙). 

Following the assumption in Eq. (1) and given the 𝑛 

training pairs of (𝒙(𝑖), 𝑦(𝑖)) , GP emulation requires finding a

point estimate for 𝜷 , 𝝎 , and 𝜎2  via either MLE or cross-

validation (CV). Alternatively, Bayes’ rule can be employed to 

find the posterior distributions if there is some prior knowledge 

on these parameters. In this paper, the MLE approach is 

employed as it provides a high predictive power while 

minimizing the computational costs [12, 13, 17-20]. 

The MLE estimates of 𝜷 , 𝝎 , and 𝜎2  maximize the

likelihood that the 𝑛 training data are generated by 𝜂(𝒙), that 

is: 

[�̂�, �̂�2, �̂�] =
argmax 

𝜷, 𝜎2, 𝝎 
|2𝜋𝜎2𝑹|

−1
2 ×

exp (
−(𝒚 − 𝑭𝜷)𝑇(𝜎2𝑹)−1(𝒚 − 𝑭𝜷)

2
) ,

which can be written as: 

[�̂�, �̂�2, �̂�] =
argmin 

𝜷, 𝜎2, 𝝎 

𝑛

2
𝑙𝑜𝑔(𝜎2) +

1

2
log(|𝑹|) + 

1

2𝜎2
(𝒚 − 𝑭𝜷)𝑇𝑹−1(𝒚 − 𝑭𝜷), (4) 

where log(∙)  is the natural logarithm, |∙|  indicates the 

determinant operator, 𝒚 = [𝑦(1), … , 𝑦(𝑛)]
𝑇
 is the 𝑛 × 1 vector

of outputs in the training data, 𝑹  is the 𝑛 × 𝑛  correlation 

matrix with (𝑖, 𝑗)𝑡ℎ  element 𝑹𝑖𝑗 = 𝑟(𝒙(𝑖), 𝒙(𝑗))  for 𝑖, 𝑗 =

1, … , 𝑛 , and 𝑭  is the 𝑛 × ℎ  matrix with (𝑘, 𝑙)𝑡ℎ  element

𝑭𝑘𝑙 = 𝑓𝑙(𝒙(𝑘))  for 𝑘 = 1, … . , 𝑛  and 𝑙 = 1, … , ℎ . Setting the

partial derivatives with respect to 𝜷 and 𝜎2 to zero yields:

�̂� = [𝑭𝑇𝑹−1𝑭]−1𝑭𝑇𝑹−1𝒚, (5) 

�̂�2 =
1

𝑛
(𝒚 − 𝑭�̂�)

𝑇
𝑹−1(𝒚 − 𝑭�̂�). (6) 

�̂�  and �̂�2  are functions of 𝝎  (since 𝑹  is a function of

𝝎 ). Plugging these estimates in Eq. (4) and eliminating the 

constants results in: 

�̂� =
argmin 

𝝎 
𝑛𝑙𝑜𝑔(�̂�2) + log(|𝑹|) =

argmin 
𝝎 

𝐿. (7) 

By numerically minimizing 𝐿  in Eq. (7) one can find  �̂� 

and, subsequently, obtain �̂�  and �̂�2  using equations (5) and

(6). Many heuristic global optimization methods such as genetic 

algorithms [21], pattern searches [22, 23], and particle swarm 

optimization [24] have been previously employed to solve Eq. 

(7). However, gradient-based optimization techniques are 

commonly preferred due to their ease of implementation and 

superior computational efficiency [2, 13, 25]. To guarantee 

global optimality in this case, the optimization is done numerous 

times with different initial guesses. 

Upon completion of MLE, the following closed-form 

formula can be used to predict the response at any 𝒙∗:

𝔼[𝑦∗] = 𝒇(𝒙∗)�̂� + 𝒈𝑇(𝒙∗)𝑽−1(𝒚 − 𝑭�̂�), (8) 

where 𝔼  denotes expectation, 𝒇(𝒙∗) = [𝑓1(𝒙∗), … , 𝑓ℎ(𝒙∗)] ,

𝒈(𝒙∗)  is an 𝑛 × 1  vector with 𝑖𝑡ℎ  element 𝑐(𝒙(𝑖), 𝒙∗) =

�̂�2𝑟(𝒙(𝑖), 𝒙∗) , and 𝑽  is the covariance matrix with (𝑖, 𝑗)𝑡ℎ

element �̂�2𝑟(𝒙(𝑖), 𝒙(𝑗)) . The posterior covariance between the

responses at the two inputs 𝒙∗ and 𝒙′ reads:

𝑐𝑜𝑣(𝑦∗, 𝑦′) = 𝑐(𝒙∗, 𝒙′) − 𝒈𝑇(𝒙∗)𝑽−1𝒈(𝒙′) +
𝒉(𝒙∗)𝑇(𝑭𝑇𝑽−1𝑭)−1𝒉(𝒙′), (9) 

where 𝒉(𝒙∗) = (𝒇𝑇(𝒙∗) − 𝑭𝑻𝑽−1𝒈(𝒙∗)).

Eq. (8) clearly demonstrates the reversion to the mean 

property of GPs in extrapolation: As the Euclidean distance 

between 𝒙∗  and the training data increases, the elements of

𝒈(𝒙∗) approach zero. When 𝒈(𝒙∗)~𝟎, the posterior mean only

depends on 𝒇(𝒙∗)�̂�. If an incorrect or incomplete set of bases is

used in training, a GP returns inaccurate predictions when 

extrapolating. 

Finally, we note that GPs can address noise and smooth the 

data (i.e., avoid interpolation) via the so-called nugget or jitter 

parameter, 𝛿 . To this end, 𝑹  is replaced with 𝑹𝛿 = 𝑹 +
𝛿𝑰𝑛×𝑛. If 𝛿 is used, the estimated (stationary) noise variance in

the data would be 𝛿�̂�2 . We have recently developed an

automatic method to robustly detect and estimate noise based on 

MLE and leave-one-out CV [13]. 

2.2 EVOLUTIONARY PROGRAMMING 
Biological structures that are more successful in grappling 

with their environment (i.e., they are fitter) survive and 

reproduce at a higher rate. In other words, over time the fitness 

of a living individual begets its structure through natural 

selection, genetic crossover, and mutation. Realizing computer 

models as complex structures, many scholars have applied the 
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notion of evolution to programming. This perspective on 

computer modeling has fathered an active field of research 

known as EP. The terms genetic programming [26, 27], inverse 

system identification [28], grammatical evolution [29], symbolic 

regression [30], and structure learning [31] are very similar lines 

of research. 

Since the early 1990s, EP and its many variants have been 

exercised to find a symbolic relation between the input(s) and 

output of a training dataset. As illustrated in Fig. 3, the essential 

idea behind EP is to first build an initial population of simple 

solutions known as individuals. Then, these solutions are 

iteratively evolved to build more complex individuals that 

hopefully better relate the inputs and output based on some 

predefined criterion. This iterative process is continued until 

convergence.  

Koza provided the first systematic approach for using EP in 

symbolic regression and robot planning. In his book [26], Koza 

models potential solutions to these problems as trees where 

nodes host primitive operations and functions while leaves store 

variables. New solutions are found by combining these trees 

together or randomly changing parts of them. Building trees is 

continued until at least one of them can faithfully interpolate the 

available data (in regression) or satisfy the governing equation 

of the system (in robot planning). Since Koza’s seminal work, 

EP and its many variants have been successfully used to, e.g., 

automatically find the governing ordinary differential equation 

of a dynamical system such as a mass-spring oscillator or a 

double pendulum [28, 30, 32]. EP has also been recently 

employed to find simple partial differential equations that relate 

the dependent and independent variables in a training dataset 

[33-37].  

We conclude this subsection with three important notes. 

Firstly, EP has also been used to find the optimum NN 

architecture [38-41] by adjusting the value of the weights, 

turning the hidden units on/off, or evolving the number of hidden 

layers and their units. However, this evolutionary approach for 

fitting NNs is no longer practiced as it is inferior to the current 

fitting practices that integrate efficient regularization, 

backpropagation, and mini-batch stochastic gradient [1]. 

Secondly, EP is fundamentally different than sparse regression 

[7, 42-46]. While in EP the input-output relation is discovered, 

in sparse regression a specific parametric form is assumed, and 

its parameters are estimated using the data. Thirdly, applications 

of EP have been primarily limited to problems of low 

dimensionality/complexity since EP tends to overfit the data by 

generating extremely complicated expressions. Although 

regularization alleviates this issue, the proposed penalty 

functions have been mostly ad hoc (e.g., based on the physics of 

the problem).   

3 OUR APPROACH FOR EXTRAPOLATIVE 
EMULATION 

Our underlying assumption is that there is a set of free-form 

parametric bases that can model the data source reasonably well. 

Consequently, if we can find these bases via some training data 

over a region, we can do predictions outside of that region. In 

this sense, our approach has the same spirit as prior works on 

symbolic regression and system identification (see Sec. 2.2 for a 

short review). However, there are four primary differences. 

Firstly, we propose a systematic and general method based on 

MLE that addresses the overfitting issue of EP. Secondly, the 

computational efficiency, robustness, and convergence rate of 

our approach is quite high. Thirdly, we can validate and correct 

the constants/coefficients found by EP. Lastly, our approach 

provides prediction intervals and is applicable to both noisy and 

noiseless data. Having stated the assumptions and main 

contributions, we next provide the details of our approach. 

Our approach is motivated by the formulation in Eq. (1) and 

its direct consequence on the GP predictor in Eq. (8). Generally, 

no parametric mean function is employed in GP emulation, i.e., 

𝒇(𝒙)𝜷 = ∑ 𝛽𝑖𝑓𝑖(𝒙)ℎ
𝑖=1 = 𝛽  in Eq. (1). This is a valid

assumption for interpolation purposes because the second term 

on the right-hand side (RHS) of Eq. (8) can emulate a 

Fig. 3 Evolutionary programming for regression: 

Potential solutions are represented as trees where nodes 

host primitive operations and functions while leaves store 

variables. New solutions are found by combining these 

trees together or randomly changing parts of them. 

Building trees is continued until at least one of them can 

faithfully interpolate the available data.  
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significantly wide range of relations between 𝒙  and 𝑦 . 

However, two interesting observations are made if the set 

𝒇(𝒙) = [𝑓1(𝒙), … , 𝑓ℎ(𝒙)]  is chosen such that it contains some

bases that adequately regress or interpolate the training data. 

Firstly, the second term on the RHS of Eq. (8) will either be a 

constant (regardless of 𝒙∗) or resemble a non-stationary noise

source. Secondly, the 𝛽 ’s corresponding to the insignificant 

bases (if there are any) will be estimated as zero. We elaborate 

on these observations below. 

In Eq. (1), assume 𝒇(𝒙)  is chosen such that 𝒇(𝒙)𝜷  can 

regress or interpolate the training data very well. Then:  

• These 𝜷  can be estimated systematically and efficiently

with MLE, see Eq. (5). In particular, if there are some

redundant bases their corresponding �̂�’s will be estimated

as zero.

• �̂� = [�̂�1, … , �̂�𝑑]𝑇 in Eq. (7) will be all either very small or

very large. In particular, if the MLE is performed over

−10 < 𝜔𝑖 < 6 , the results of Eq. (7) will be �̂�1 = �̂�2 =
… =  �̂�𝑑 = 𝑠 where 𝑠 = −10 or 𝑠 = 6.

The effect on �̂� can be explained as follows. If the training data 

is noisy but the GP is forced to interpolate (i.e., nugget is not 

used), 𝜉(𝒙) in Eq. (1) will (wrongly) learn noise. Since there 

are no correlations in noise, �̂�1 = �̂�2 =  … =  �̂�𝑑 = 6 to force

the spatial correlations of 𝜉(𝒙)  to die very fast along all 

directions in the input space. However, if the nugget is used and 

systematically estimated via MLE, 𝜉(𝒙) will (correctly) learn 

the noise mean. Since we have assumed 𝒇(𝒙)�̂�  regresses the 

training data very well, the noise mean is zero. Hence, 𝜉(𝒙) will 

be zero everywhere which indicates that there is a very high 

correlation between any two points in the input space. Such high 

correlations can be achieved by �̂�1 = �̂�2 =  … =  �̂�𝑑 = −10.

Fig. 4 illustrates these results in 1𝐷 . If the training data is 

noiseless, 𝒇(𝒙)�̂� interpolates the data accurately. In this case, 

𝜉(𝒙)  will be zero everywhere and �̂�1 = �̂�2 =  … =  �̂�𝑑 =
−10 . Thus, the estimate on �̂�  provides a clear signal on 

whether 𝒇(𝒙)�̂�  regresses or interpolates the data accurately; 

regardless of whether the data is noisy or not. 

The above discussions assumed that 𝒇(𝒙) are given. In high 

dimensions or complex problems, it is impractical to guess these 

bases or build a very large set of bases and hope that MLE can 

filter out the redundant ones. As demonstrated in Fig. 2, we find 

these bases with EP. In particular, given a training dataset, we 

first fit a GP without any parametric mean, i.e., 𝒇(𝒙)𝜷 =
∑ 𝛽𝑖𝑓𝑖(𝒙)ℎ

𝑖=1 = 𝛽 . This GP is accurate as long as we are 

interpolating. So, we use this GP to generate a new training 

dataset over the interpolation region. This new dataset is then 

used in EP to find 𝒇(𝒙), i.e., the set of parametric bases. Next, 

we refit the GP but this time use the newly found 𝒇(𝒙). This 

process is continued until convergence, i.e., until �̂�1 = �̂�2 =
… =  �̂�𝑑 = 𝑠 where 𝑠 = −10 or 𝑠 = 6.

It is important to note that EP generates a population of

solutions, i.e., many sets of 𝒇(𝒙)’s. In our implementation, we 

only choose the best individual for the next iteration and employ 

it in GP training. Other approaches may be exercised instead. For 

example, one could use the union of the top 10 individuals to 

increase the diversity of bases in 𝒇(𝒙) and let MLE determine 

their relevance in the next iteration of our approach. 

Fig. 4 Learning noise with GPs: (a) A noisy dataset that follows a 

normal distribution. (b) Effeect of 𝜔 on 𝑟(𝑥, 𝑥′) in 1D, see also Eq. 

(3). When interpolating/regressing the noisy data, a very large/small 

𝜔 is needed. A GP with 𝜔 = −4 (𝜔 = 4) can regress (interpolate) 

the data shown in (a). It is assumed that 𝑥 is scaled to [0, 1]. 

Table 1 Analytical examples: Our examples have combinations of polynomials, trigonometric functions, logarithm, and exponentiation. 

EX ID Function 𝑴𝒊𝒏(𝒙) 𝑴𝒂𝒙(𝒙) 𝑹𝒂𝒏𝒈𝒆(𝑦) 

1 𝑦(𝑥) = 𝑥1
2 − 𝑥1 + 5 sin(3𝑥1) + 1 −4 5 27.595 

2 𝑦(𝒙) = 𝑥1
2 + 3𝑥1 − exp(𝑥1) + cos(𝑥1) + 4 −4 5 111.333 

3 𝑦(𝒙) = (𝑥1
2 − 10)/(𝑥2

2 + 𝑥2 + 2) [−4.5, −5] [6, 7] 20.324 

4 𝑦(𝒙) = 𝑥1𝑥2 + 𝑥2
2 + 5 sin(3𝑥1) + 1 [−4, −4] [−1, 2] 42.498 

5 𝑦(𝒙) = 𝑥1
2 + cos(𝑥2) + log(|𝑥3|) + exp(𝑥2) + 4 [−1, −2, 0.25] [4, 3, 6] 36.888 

6 𝑦(𝒙) = 𝑥2𝑥3 + 𝑥1 − 𝑥2 + 3 sin(2𝑥1) − 2 cos(𝑥3) − 5 [−2, −6, −2 ] [4, 2, 3] 37.164 

7 𝑦(𝒙) = 𝑥1𝑥2𝑥3 + 𝑥2
2 + 𝑥2 + 5 sin(3𝑥1) + sin(𝑥3) + 1 [−1, −2, −1] [3, 2, 5] 62.265 

8 𝑦(𝒙) = 𝑥1𝑥2 − 𝑥3𝑥4 + 𝑥1 − 2sin(𝑥1𝑥3) + 2 [−4, −3, 3.5, −5] [2, 4, 6, 4] 76.568 
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The original training dataset is not directly used in EP 

because (𝑖)  EP generally overfits if the dataset is noisy. GP 

allows to automatically detect and remove noise. (𝑖𝑖)  The 

number of training data might be too small to be directly used in 

EP. This would lead to overfitting in EP as well. (𝑖𝑖𝑖)  We 

normally don’t have any control over the spatial distribution of 

the original training data. Using GP to generate data allows to 

homogeneously or heterogeneously distribute them (e.g., dense 

in some regions while sparse in other regions). As we show in 

Sec. 4.2, this helps in finding highly complex bases. 

Note that EP tends to overfit even with noiseless and 

informative data made by GP. Hence, once a set of bases are 

found by EP, we refit the GP to employ MLE and determine if 

any of the bases is redundant. We believe this approach is more 

robust, efficient, and flexible than exercising ad-hoc 

regularization in EP. For instance, EP produces deeply nested 

functions such as sin(𝑠𝑖𝑛(𝑐𝑜𝑠(… ))) in many of our examples 

in Sec. 4.1. Once these functions are used in GP training, the 

corresponding 𝛽’s are consistently estimated as zero by MLE. 

4 VALIDATION 
In this section, we apply our approach to a set of analytical 

examples in Sec. 4.1 and an engineering one in Sec. 4.2. In all 

the examples we use the Python package DEAP [27] for EP and 

train the GPs following the algorithm in [13]. We initialize 

DEAP with a set of primitive functions and let the algorithm 

evolve them to build more complex functions. Our primitive set 

includes the following functions and operations: 

log(|∙|) , exp(∙) , +, ×, −,÷, sin(∙),  and cos(∙) . In all of our 

examples, the population size, maximum number of generations, 

probability of crossover, and mutation probability are set to, 

respectively, 1200, 350, 0.3, and 0.4. The breaking parameter 

is set to 50, i.e., the evolution stops if the best individual does 

not improve after 50 generations. The fitness function in DEAP 

is set to minimize the root mean squared errors. These errors are 

calculated over the data that GP generates at each iteration of our 

approach.  

4.1 ANALYTICAL EXAMPLES 
As shown in Table 1, the analytical functions we study are 

quite complex: many of them have high frequency or non-trivial 

terms that render guess-based function discovery for 

extrapolation very difficult. We study these examples in two 

scenarios. In the first one, the original training data is noiseless; 

allowing us to directly compare the performance of our approach 

to EP while changing the size of the training data. In the second 

scenario, the training data is noisy, so we only use our approach 

because EP overfits noisy data. We use Sobol sequence [47, 48] 

for taking samples from each function. Sample-to-sample 

variations are not observed (and thus not reported) in our 

simulations because (𝑖) the sample sizes are sufficiently large, 

and (𝑖𝑖)  Sobol sequence generates high quality space-filling 

designs.  

Table 2 summarizes the results in the first scenario and 

indicates that, in the absence of noise, both approaches are quite 

efficient. In Ex 6, EP is unable to find the high frequency term 

sin(2𝑥1) but increasing the size of the training data alleviates

this issue. In Ex 7, however, EP cannot learn the sin(𝑥3) term

even with many data points. Instead of sin(𝑥3) , EP wrongly

finds other terms that are generally highly nonlinear and change 

with each time the algorithm is run. Two sample extra terms 

found by EP in Ex 7 are 𝑥1 + cos(𝑥1
2) and 𝑥1 + (cos(2𝑥1) +

cos(𝑥1
2))sin (𝑥1). This error in Ex 7 is primarily because −1 ≤

sin(𝑥3) ≤ 1  while 𝑦(𝒙)  changes in a much larger range. To

Table 2 Results on analytical examples: Our approach (GP+EP) 

and EP can find the true function form in most cases. In Ex 6, EP 

missed sin(2𝑥1) with small training data. In Ex 7, EP could not

recover the sinusodal term sin(𝑥3)  on its own. Our approach

never produces redundent bases because of MLE verification. 

However, EP wrongly produces extra terms if it cannot find the 

exact function form. Our simulation results are not affected by the 

randomness of the original training data. This is primarily due to 

the data size (which is at least 100𝑑 ) and the space-filling 

property of Sobol sequence.  

Ex ID 

(dim) 

Size of Original 

Training Data 

Exact Form Recovered? 

EP GP+EP 

1 

(1) 

100 ∗ 𝑑 Yes Yes 

200 ∗ 𝑑 Yes Yes 

300 ∗ 𝑑 Yes Yes 

2 

(1) 

100 ∗ 𝑑 Yes Yes 

200 ∗ 𝑑 Yes Yes 

300 ∗ 𝑑 Yes Yes 

3 

(2) 

100 ∗ 𝑑 Yes Yes 

200 ∗ 𝑑 Yes Yes 

300 ∗ 𝑑 Yes Yes 

4 

(2) 

100 ∗ 𝑑 Yes Yes 

200 ∗ 𝑑 Yes Yes 

300 ∗ 𝑑 Yes Yes 

5 

(3) 

100 ∗ 𝑑 Yes Yes 

200 ∗ 𝑑 Yes Yes 

300 ∗ 𝑑 Yes Yes 

6 

(3) 

100 ∗ 𝑑 No Yes 

200 ∗ 𝑑 Yes Yes 

300 ∗ 𝑑 Yes Yes 

7 

(3) 

100 ∗ 𝑑 No Yes 

200 ∗ 𝑑 No Yes 

300 ∗ 𝑑 No Yes 

8 

(4) 

100 ∗ 𝑑 Yes Yes 

200 ∗ 𝑑 Yes Yes 

300 ∗ 𝑑 Yes Yes 
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minimize the reconstruction error, EP focuses on the polynomial 

terms as well as sin(3𝑥1) which has a higher amplitude.

As opposed to EP, our approach which integrates GP and EP 

can consistently find the true underlying function. We iterate 

between GP and EP per Fig. 2 and stop once �̂� converge. In all 

cases in Table 2, we generate 1000 data points with GP for EP 

and iterate between them at least twice to arrive at �̂�1 = �̂�2 =
… =  �̂�𝑑 = −10. Note that, our algorithm always ends with GP

where MLE is carried out. At each iteration, MLE validates the 

bases found by EP in the previous iteration. In some of our 

examples, EP misidentifies some of the coefficients or includes 

some extra bases. These inaccuracies are all corrected by MLE 

in the next iteration. This is shown for Ex 1 in Fig. 5 where in 

the final solution the coefficient of sin(3𝑥1)  is incorrectly

estimated as 3  instead of 5 . When the bases 𝑥1
2, 𝑥1 , and

sin(3𝑥1)  are used in GP emulation in the next iteration, the

coefficient of sin(3𝑥1) is corrected by MLE. Note that we do

not include the constants found by EP in GP as bases because we 

always let MLE determine if a constant term is required. This is 

done by always including a constant number such as 1 in the set 

of bases.  

Table 3 summarizes the results in the second scenario where 

the original training data is noisy. EP, on its own, overfits noisy 

data and rarely obtains the exact form.. We test two noise levels 

to assess the sensitivity of our approach to noise variance. As the 

tabulated data indicate, we can successfully recover the true 

function forms given only noisy data. In this case, GP 

automatically filters out the noise using the nugget parameter. 

Hence, the data that it generates for EP at each iteration is 

noiseless. 

4.2 EXTRAPOLATION FOR MATERIALS MODELING 
Unlike the examples in Sec. 4.1, in real-world applications 

the exact relation between the independent and dependent 

variables is unknown. In this subsection we study how our 

algorithm performs in these scenarios. 

Establishing microstructure-property relations plays a key 

role in materials design and, thereby, in many industrial and 

technological sectors [49-51]. Here, we examine the case of 

learning the constitutive law of a 2𝐷  hyperelastic composite 

microstructure. The constitutive law of our microstructure is 

unknown and thus numerical methods (e.g., finite element 

analysis, FEA) are required to find the response of the 

Fig. 5 Evolution of a solution in evolutionary programming: In each iteration of our approach, EP is used to find a parametric function that can 

interpolate or regress the data generated via GP. The obtained solution is then validated via MLE in the next iteration. This figure corresponds to the 

first iteration in Ex 1 (no noise, 100 original training samples). The final solution does not match the true function form because the coefficient of 

sin(3𝑥1) is not 5. The MLE corrects this issue in the next iteration.  

Table 3 Results on analytical examples with noise: EP overfits 

noisy data if used alone. So, we only use GP+EP which obviates ad-

hoc regularization of EP. We never get extra terms since MLE 

associates a coeficient (i.e., 𝛽) of zero to redundent bases. The added 

noise to the data is zero-mean normal with variance as given in the 

table. Our simulation results are not affected by the randomness of 

the original training data. This is primarily due to the data size (which 

is 400𝑑 ) and the space-filling property of Sobol sequence. The 

iteration numbers do not include the first time that GP is fitted where 

no parametric function is used.  

Ex ID 

(dim) 

Noise 

Variance 

Exact Form Recover? Iterations 

(EP+GP) EP EP + GP 

1 (1) 
0.252 No Yes 1 

22 No Yes 2 

2 (1) 
0.22 No Yes 1 

1.52 No Yes 1 

3 (2) 
0.252 No Yes 1 

22 No Yes 1 

4 (2) 
0.22 No Yes 1 

22 Yes Yes 1 

5 (3) 
0.252 No Yes 2 

22 No Yes 3 

6 (3) 
0.22 Yes Yes 1 

22 No Yes 1 

7 (3) 
0.12 No Yes 2 

1.52 No Yes 1 

8 (4) 
0.22 No Yes 2 

22 No Yes 2 

Ex ID

(dim)

Noise

Variance

Exact Form Recover? Iterations

(EP+GP)EP EP + GP

1 (1)
0.252 No Yes 1

22 No Yes 2

2 (1)
0.22 No Yes 1
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microstructure to any applied strains. The high computational 

costs of numerical methods hinder designing multiscale 

materials whose fine-scale behavior is governed by our 

microstructure. Hence, the goal is to find the constitutive law 

and, in turn, be able to predict the microstructure behavior 

(stored potential in our case) under any applied strains.   

We take a data-driven approach to achieve this goal. In 

particular, a training dataset of strains-potential is built by 

deforming the microstructure under various strain states via 

FEA. The dataset has a total of 512 samples and its inputs and 

output are, respectively, principal strains (휀1, 휀2) and the stored

potential (𝜙) . As demonstrated in Fig. 6(a), the data are 

heterogeneously distributed in the input space. The data have a 

small amount of noise that is primarily due to numerical 

instabilities, excessive mesh distortion, and round off errors 

experienced in FEA. The reader is referred to [52] for more 

technical details on how the data is generated. 

We divide this dataset into three mutually exclusive and 

collectively exhaustive sets for training, interpolation testing, 

and extrapolation testing with sample sizes of, respectively, 

412, 50, and 50. Then, we fit an emulator to the training set and 

use it to predict the stored potential in the other two sets. To 

evaluate the performance of our approach (method 1), we 

compare it against three other emulation strategies: a polynomial 

model (method 2) a GP without any parametric mean (method 

3), and a feed forward NN (method 4).  

With our method, in each iteration, we generate 

heterogeneously distributed data with GP for EP. In particular, 

we first build a space-filling design of size 500  over the 
(휀1, 휀2)  space with Sobol sequence and then augment this set

with 100 data points close to 휀1 = 휀2 = 0 to capture the small

strain behavior well. In each stage, we ensure the points are 

located in the strain space such that GP interpolates. The reason 

for placing more points close to the origin is that with large 

strains, 𝜙 is large so EP finds bases that are primarily predictive 

of the large strain behavior. To help EP capture the small strain 

behavior, we generate more data points that correspond to that 

region, see Fig. 6(b). 

We evaluate these four methods using two criteria: (1) The 

performance on the interpolation and extrapolation test sets, and 

(2) the physical constraints that the resulting models should 

satisfy. Table 4 summarizes the performance of each method 

based on the first criteria and indicates that our method and NN 

outperform other methods. These results are consistent with Fig. 

6(c)-(f) where only our method and NN produce models with 

physically acceptable trends over the strain ranges shown in Fig. 

6(a). In particular, in a hyperelastic material, such as rubber, the 

potential is zero in the absence of any strains and monotonically 

increases as the strain magnitude grows [53]. These properties 

are only preserved consistently with our approach and NN where 

the derivative of 𝜙 with respect to either 휀1 or 휀2 is positive

over the strain space of Fig. 6(a) and the potential at (0,0) is 

equal to 0.  

As opposed to NN which is a black box, our approach 

provides (1) an analytical expression for the dynamics of the 

model that can be used for inspection and design, (2) prediction 

Fig. 6 Extrapolation for materials modeling: (a) The training data. 휀1 and 휀2 are the principal strains and 𝜙 is the stored potential in the composite 

microstructure upon deformation. The green, red, and blue data points denote, respectively, the training set, interpolation test set, and extrapolation test 

set. (b) Data generated with GP for EP in one of the iterations of our appraoch. Colors indicate the  (c) Emulation via cross-validated polynomials, 

(d) Emulation via GP (e) Emulation using our approach. The light blue surfaces mark the 95% prediction intervals. (f) Emulation with cross validated 

NN. The NN model is plotted over a larger strain range to indicate its shortcoming in excessive extrapolation. This behavior is not observed in our 

appraoch.  
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intervals which are useful in sequential sampling and assessing 

the reliability of the extrapolation and interpolation, and (3) 

faithful extrapolations over large ranges (as shown in Fig. 6(e) 

extrapolation with NN is inaccurate for very large strains).  

5 CONCLUSIONS AND FUTURE WORKS 
In this paper, we introduced a method for extrapolative 

emulation. Our underlying assumption was that there is a set of 

free-form parametric functions that can emulate the data source 

reasonably well. The by-product of this assumption is that if we 

can find these bases via some training data over a region, we can 

do predictions outside of that region. To systematically and 

efficiently find these bases, we introduced an approach by 

integrating GPs with evolutionary programming. We start by 

learning a GP without any parametric mean function. Then, a rich 

dataset is generated by this GP and subsequently used in EP to 

find some parametric bases. Afterwards, we retrain the GP while 

using the bases found by EP. This retraining essentially allows to 

validate and/or correct the discovered bases via maximum 

likelihood estimation. By iterating between GP and EP we 

robustly and efficiently find the underlying bases that can be 

used for extrapolation.  

We illustrated our approach with eight analytical problems 

(with or without noise) where it performed better than EP alone. 

We also studied an engineering example on finding the 

constitutive law of a composite microstructure. The emulators 

we found using our approach were more consistent with the 

physics of the problem than those found by other approaches. 

In our approach, we used a GP as an interphase between the 

original data and EP. Other methods can be used in place of GPs, 

but care must be exercised because the chosen method must have 

the capability of detecting overfitting and convergence. In the 

engineering example, we verified our results by checking the 

monotonicity constraint. A more rigorous and quantitative 

validation procedure, perhaps by obtaining more data from FEA, 

will be useful.  
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