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A B S T R A C T

Carbon fiber reinforced plastics (CFRPs) are attracting growing attention in industry because of their enhanced
properties. Preforming of thermoset carbon fiber prepregs is one of the most common production techniques of
CFRPs. To simulate preforming, several computational methods have been developed. Most of these methods,
however, obtain the material properties directly from experiments such as uniaxial tension and bias-extension
where the coupling effect between tension and shear is not considered. Neglecting this coupling effect dete-
riorates the prediction accuracy of simulations. To address this issue, we develop a Bayesian model calibration
and material characterization approach in a multiscale finite element preforming simulation framework that
utilizes mesoscopic representative volume element (RVE) to account for the tension-shear coupling. A new
geometric modeling technique is first proposed to generate the RVE corresponding to the close-packed uncured
prepreg. This RVE model is then calibrated with a modular Bayesian approach to estimate the yarn properties,
test its potential biases against the experiments, and fit a stress emulator. The predictive capability of this
multiscale approach is further demonstrated by employing the stress emulator in the macroscale preforming
simulation which shows that this approach can provide accurate predictions.

1. Introduction

Carbon fiber reinforced plastics (CFRPs) are of much interest in the
industry nowadays because of their superior properties such as high
strength-to-weight ratio, high modulus to weight ratio, good dimen-
sional stability, excellent damage tolerance, and good corrosion and
fatigue resistance [1–3]. Utilization of these materials in the aerospace
and automotive industries leads to significant weight reduction of
equipment systems compared to the conventional metal dominated
products; resulting in improved fuel economy and carbon emission
[4–6].

To automatically manufacture CFRP parts in large quantities, many
processes have been proposed and developed including resin transfer
molding (RTM) [7,8], fiber deposition [9–12], pultrusion [13], and
thermoforming [14–16]. The latter process is a proper choice to pro-
duce parts for transportation equipment as it can provide a high pro-
duction rate with relatively complicated surface geometries, good

product quality, and low facility cost. In the thermoforming process, the
first step is to stack layers of thermoset carbon fiber prepregs (i.e.,
fabric impregnated by uncured thermoset resin) in an optimized fiber
orientation combination. Then, these plane laminates are heated to
soften the resin and subsequently formed to the desired 3D shape on a
press machine during the preforming step. Finally, the parts are cured
to solidify the resin and achieve the designed part shape [17,18]. In the
thermoforming process, most of the fiber re-orientation is introduced in
the preforming step which replaces the conventional high-cost and low-
rate hand laying work. Since mechanical stiffness and strength of the
composites are mostly affected by the fiber direction [19], the selection
of the preforming parameters such as process temperature and initial
fiber orientation is important to the final part performance including
shear and kink bands development in the weave under various loading
conditions [20].

To optimize the preforming parameters and produce defect-free
parts, numerous tests with different parameter combinations are
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commonly conducted [21]. However, the consumption of raw material
and the long development period increase the cost and time of pro-
duction; hampering the practicality of thermoforming. To address this
issue, several computational models based on the finite element (FE)
method have been developed to simulate the preforming process to
predict the fiber orientation, geometry, wrinkling behavior on the part,
and the forming force [4,14,21–24]. For reliable predictions, there is a
need for characterizing and employing realistic and accurate material
properties in the computational models.

Intra-ply tension and intra-ply shear behaviors are the two im-
portant material performances that dominate the behavior of the pre-
preg sheets. Since shear is the most dominant deformation mode in the
composite forming, an international collaborative team have developed
the widely accepted bias-extension benchmark test to characterize the
intra-ply shear accurately [25]. Uniaxial tension test is also employed
by many researchers for intra-ply tension characterization because of its
convenience in carrying out the test. These two tests provide reliable
results but have some drawbacks. The major one is that they achieve
limited loading states. For example, the uniaxial tension test can only
introduce pure tension deformation while the bias-extension test can
only introduce pure shear deformation. Hence, the coupling between
tension and shear cannot be physically characterized and subsequently
implemented into the numerical model. Although in most cases this
neglection will not affect the prediction of geometry and fiber or-
ientation significantly due to the fact that the shear modulus of the
uncured prepreg is always several orders of magnitude smaller than its
tensile modulus, it will introduce errors in the prediction of preforming
stress and punch force and hence, reduce the analysis accuracy of de-
fects, such as breakage, pull-out, and separation of the fiber yarns.

Several new test devices such as the biaxial tension apparatus [26]
and the picture frame apparatus with tension adjustment [27] have
been designed to address the above issue. In practice, however, even
these complex devices cannot cover the entire strain states that the
prepreg will undergo during preforming due to the complexity of three-
dimensional geometry and the resulting nonlinear loading paths. Ad-
ditionally, these experimental characterization methods are at the
macroscale and hence do not provide insightful information on how the
mesoscale composite structure and constituents affect mechanical
properties of the materials. The cost of raw materials and test time also
need to be considered in planning experiments.

In this paper, we develop a new multiscale preforming simulation
method based on the prepreg characterization by the mesoscopic re-
presentative volume element (RVE) to account for the tension-shear
coupling and apply it to the preforming simulation of a 2 × 2 twill
thermoset prepreg. To address the challenge of unknown material
parameters at mesoscale, a Bayesian model calibration and validation
approach is developed for integrating the calibrated mesoscale stress
emulator with macroscale part performance simulations. The flowchart
of our approach is illustrated in Fig. 1. Our method starts by accurately
modeling the mesoscopic RVE in terms of both structure and yarn

material (aka constitutive) law. Then, we calibrate our RVE simulator
against mesoscopic experiments with a modular Bayesian approach to
estimate the mesoscopic yarn properties [28] and build an accurate and
inexpensive stress emulator. We note that this emulator is learned at the
mesoscale and acts as the non-orthogonal material constitutive law by
replacing the expensive mesoscale RVE simulations at each integration
point during the macroscale preforming analysis. The validity and
predictive power of our approach is tested by comparing the macroscale
simulation and experimental results.

The rest of the paper is organized as follows. In Sec. 2, we sum-
marize the experimental measurement of the temperature condition
during the preforming process for material characterization. We ela-
borate on our FE modeling of the mesoscopic RVE (including the
structure construction and the yarn material model) in Sec. 3. The de-
veloped Bayesian calibration method that identifies the mesoscopic
yarn properties and builds the Gaussian process (GP) stress emulator
(i.e., mesoscale constitutive law) is detailed in Sec. 4. We validate our
approach in Sec. 5 by comparing our macroscale simulation results on
the double-dome preforming process against experimental data. The
paper is concluded in Sec. 6 by summarizing the contributions and
potential future works.

2. Temperature condition for the preforming experiment

Preforming is a temperature varying process because of the hot
prepreg sheet and the cold/warm tools used in the process. In our ex-
periment using the double-dome benchmark geometry [29], the ther-
moset prepreg was first heated in an oven to around 70 °C and then
placed under the press for preforming, see Fig. 2 (a). The press was kept
at 23 °C by the coolant within it for fast production rate, so the tem-
perature of the prepreg dropped from the initial value during the pro-
cess. The temperature history at the top surface center, the bottom
surface center, and one side point on the top surface of the prepreg are
measured by thermocouples and plotted in Fig. 2 (b).

The plot indicates that the prepreg reached to the temperature of
around 70 °C in the oven. Then, it was cooled down gradually to around
45 °C by the air during the transportation from the oven to the press.
When it was placed under the press, the cooling rate increased greatly
due to the heat conduction between the hot prepreg and the cold metal.
In particular, the temperature dropped 20 °C within the first 2 seconds.
Meanwhile, it took the press 10 seconds to contact the punch and the
prepreg and another 6 seconds to finish the preforming. Therefore, the
actual temperature of the prepreg during the preforming process was
very close to 23 °C, i.e., the press temperature. As a result, it is rea-
sonable to perform the characterization of the prepreg with uncured
thermoset resin and simulate the preforming at the fixed temperature of
23 °C.

Fig. 1. Flowchart of the developed multiscale preforming simulation method: The Bayesian calibration utilizes the RVE and experiments to obtain the yarn
properties and the mesoscale stress emulator. The stress emulator is then implemented into the non-orthogonal material model for macroscopic preformation
simulation.
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3. Mesoscopic RVE modeling

The RVE is the repeatable unit in the composite material and we
model it as dry fabric without the surrounding resin since the prepreg
contains soft uncured thermoset resin and its shear stiffness is negligible
compared to that of cured composites. Several different approaches
have been developed by researchers to construct RVEs with accurate
woven patterns and yarn geometrical features because of their sig-
nificant influence on the RVE stress response under deformation. One
approach is to directly use CAD software to design and output the RVE
structure [30,31]. This approach, while being straightforward and
suitable for a specific composite structure, is time-consuming because,
for each specific composite, the structure needs to be drawn in-
dividually, and when the yarn surface geometries become complex, the
yarn cross-section shape needs to be manually identified. To generalize
the design process and accommodate for more composite structures,
geometrical modeling software packages such as TexGen [32] and
WiseTex [33] are developed. These packages store large libraries for
different composite patterns and can generate the corresponding RVE
structure given the geometrical features such as RVE length, yarn
width, yarn height, and so on. However, the automatically generated
structures usually have fixed shape of the yarn cross-sections and yarn

centerlines. These simplifications are suitable for loose woven materials
but result in yarn-to-yarn penetration in close-packed composites (see
Fig. 3). In this case, fine-tuning the geometry by modifying the position,
dimension [34], or utilizing non-symmetrical shapes [35] of the local
yarn cross-section is essential. These procedures, however, involve
complicated geometry manipulation and are time-consuming. For
capturing more accurate and detailed structures in RVE, researchers
have recently employed X-ray micro-tomography to directly obtain the
geometry of the composites [36–38]. This is a promising technique but
is quite expensive and requires careful image processing.

3.1. Construction of the mesoscopic RVE structure

To achieve a fine balance between speed and accuracy in generating
the RVE structure, we propose a novel 2-step geometrical modeling
method with a one-time post-processing to modify the local yarn geo-
metry generated by TexGen. In our method, the rough composite
structure without yarn-to-yarn penetration is first generated by TexGen
in Step 1 with the specified woven pattern and key characteristic sizes,
such as weaving pattern, yarn width, yarn gap, and yarn thickness.
Then, the mesh and the local yarn orientation corresponding to the
structure is imported to a commercial finite element software, Abaqus
Explicit, in Step 2 to compress the structure in the thickness direction to
satisfy the prepreg thickness requirements while maintaining the al-
ready assigned features. Finally, the deformed mesh and the local ma-
terial orientation are exported to build the RVE for virtual material
characterization.

We employ this method to build a 2 × 2 twill prepreg with uncured
thermoset resin developed by Dow Chemical Company with the surface
and cross-section shown in Fig. 4. The characteristic dimensions of the
yarns and the average thickness of the prepreg are obtained via the
Alicona Infinite Focus microscope and the caliper, respectively. The
measured data are listed in Table 1.

To construct the RVE structure, we first input the average values of
the yarn width, yarn gap, yarn thickness, and the 2 × 2 twill pattern in
TexGen. Table 1 indicates that the yarn gap is very small, less than

Fig. 2. Double-dome preforming test setup: (a) The press for the preforming, and (b) the prepreg temperature history plot. The plot indicates that the prepreg
temperature drops rapidly from the initial 70 °C to around 23 °C when it is placed under the press.

Fig. 3. Yarn-yarn penetration in the RVE: The white circles illustrate loca-
tions of the yarn-to-yarn penetration in the composite prepreg RVE geometry
model generated by TexGen.

Fig. 4. 2x2 twill prepreg: (a) Surface and (b) Cross-section.
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10 μm, compared to the yarn thickness and the yarn width. To minimize
the yarn-to-yarn penetration, we set the shape of the yarn's cross-sec-
tion to lenticular. However, this simple change is insufficient to avoid
the penetration completely (see Fig. 3), so we artificially enlarge the
TexGen prepreg structure thickness from mm0.85 to mm1.2 . The result is
illustrated in Fig. 5 and as it can be observed there is no longer any
penetration between different yarns.

The drawback of this thickness enlargement, however, is that many
gaps are introduced in the structure. Comparison between the cross-
section images in Figs. 4(b) and 5(b) clearly demonstrates this loose-
packed issue. These artificial gaps significantly affect the prediction
capability of the RVE simulator: Upon exerting load, the inner gaps will
greatly soften the RVE, reduce the response moduli, and elongate the
undulation region. To make such a loosely-packed RVE behave simi-
larly to the real prepreg, very large and unrealistic yarn moduli need to
be employed for the yarn material properties.

As a solution, we introduce the compression method as Step 2 to
close these artificial gaps in the RVE. To this end, two rigid plates are
employed to compress the prepreg RVE in the thickness direction to
reduce the thickness to mm0.85 , which is the average value of the real
material, see Fig. 6. This step is performed using the Abaqus explicit
solver and its rationality is supported by the fact that there is no strict
constraint for the yarn cross-section shape and the longitudinal path.
Fixed boundary conditions are applied to the sides of the RVE to avoid
changing its side lengths upon compression. At this stage, the me-
chanical properties of the prepreg yarn have not be characterized yet
because they require calibration by the RVE, whose structure has not
been obtained yet. As a result, in the compression simulation, the elastic
moduli of the yarn in compression are selected to be the same as the
existing ones for the also highly anisotropic cured unidirectional com-
posite. The Poisson's ratios are set to be zero in all directions to avoid
altering the yarn width due to the yarn deformation in the thickness
direction. It should be noted that these yarn properties are only utilized
to generate the RVE structure. They are not the same as the ones in the
following sections for the prepreg virtual material characterization.
General contact with the hard contact normal behavior is applied to the
yarns and the plates to avoid the yarn-to-yarn and yarn-to-plate pene-
tration during the deformation.

After the compression, the corresponding mesh and local material
directions of the RVE are exported to evaluate the dimensions and pe-
netration. The yarn thickness is inevitably reduced by around 6% be-
cause of the compression, but it is insignificant compared to the 5%
variation of the real material value. Apart from the thickness, all other
characteristics of this RVE structure are the same as the ones in the real
prepreg, and no yarn-to-yarn penetration is observed.

In summary, our 2-step geometrical modeling approach can

conveniently generate mesoscopic RVE structure with accurate char-
acteristic dimensions, weave pattern, and yarn packing density of the
real material without penetration.

3.2. Mesoscopic yarn material model

In addition to the RVE structure, the yarn material model should
also be correctly implemented to have the RVE simulations correspond
to reality. Because preforming is a one-step loading process on the
uncured prepreg where the material recovery after the deformation is
not included, the yarns within the RVE can be assumed to be purely
elastic. Furthermore, the prepreg yarns that consist of quasi-unidirec-
tional fibers and uncured resin exhibit a transversely isotropic material
property [39]. Direct implementation of such a material behavior,
however, leads to numerical errors considering the yarn-yarn interac-
tions and yarn cross-section geometry. We illustrate the possible error
with an example where the compression load is applied along the width
to a single yarn. This loading condition is quite common for the prepreg
in shear deformation where, as illustrated in Fig. 7 (a), in the real yarn
the fibers rearrange as the resin flows. Consequently, the yarn deforms
(i.e., its dimensions change) while preserving the basic elliptical shape.
In the FE simulation, the yarn is treated as a continuum with relatively
flat cross-section geometry where, if the transversely isotropic material
model is utilized, numerical errors such as artificial bending and ex-
cessive element distortion will appear especially on the edges, as can be
seen in Fig. 7 (b). To address this issue, the transverse shear and ten-
sion/compression behaviors in the yarn material model are decoupled
to control the bending and distortion of the yarn while maintaining its
compression property [40,41]. With this approach, a deformation mode
similar to the real material can be achieved, as shown in Fig. 7 (c).

Based on the decoupling approach, we model the yarn using an
anisotropic elastic constitutive law with distinct Young's and shear
moduli in different directions. This constitutive law is defined in the co-
rotational frame which is updated with the deformation gradient tensor
to accurately trace the local fiber orientation upon large yarn de-
formation and rotation under the RVE deformation. In the prepreg
yarns, the very stiff carbon fibers are aligned in the longitudinal di-
rection along which the applied load is predominantly present.
Meanwhile, the soft uncured resin governs the transverse deformation.
Therefore, it is straightforward to decouple the yarn deformation in the
longitudinal and transverse directions by setting both Poisson's ratios
and 13 to 0. Additionally, to ensure numerical stability, we set the
transverse Poisson's ratio (i.e., 23) to 0.3. For the yarn shear moduli G12,
G13 and G23, we coupled them with the transverse modulus of the yarn

Table 1
Characteristic dimensions of the 2x2 twill: The yarn characteristic dimen-
sions (in mm) are obtained via the Alicona Infinite Focus microscope and the
average prepreg thickness is measured by the caliper.

Yarn width Yarn gap Yarn thickness Prepreg thickness

±2.430 0.112 ±0.004 0.004 ±0.503 0.012 ±0.85 0.15

Fig. 5. TexGen rough geometry model with the
thickness of the prepreg as of 1.2mm: (a) The
structure, and (b) the cross-section of the corre-
spondent mesh.

Fig. 6. Prepreg RVE compression in FE software Abaqus: Two rigid plates
are introduced to adjust the RVE thickness.
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E2 for the ease of calibration and manually adjust them to be from 1 to
25 times larger than E2. It was found that if the shear moduli are too
small compared to E2, the artificial bending in Fig. 7 (b) will happen. If
they are too large, on the other hand, then significant transverse
compression of the yarn will be observed even before the yarn-to-yarn
contact. G12 and G13 to be 15 times larger, and G23 to be 10 times larger
than E2 are found to be able to obtain the similar yarn deformation
pattern as that observed experimentally. The unknow material prop-
erties then are yarn longitudinal modulus E1, transverse modulus E2,
and friction coefficient µ. The yarn constitutive law is expressed as:

= =d S d d[ ] ·

0 0

0

0
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0

0 0

0 0
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where is the yarn local stress, S[ ]ij is the compliance tensor, and is
the yarn local strain. Once the structure and the material model of the
RVE are generated, they are inputted to the Abaqus Explicit for FE si-
mulation given the normal true strain along the yarns, the shear angle,
and the mesoscopic yarn properties. The normal true strain and the
shear are applied via the periodic boundary condition (PBC) to ensure
the accurate representation of the deformation by RVE [42]. C3D6 and
C3D8 full integration elements are employed for discretization to avoid
the hourglass issue. After the simulation, the stress of each element is
extracted and averaged to obtain the stress response of the RVE. The

mechanical properties of the mesoscopic uncured prepreg yarn in-
cluding elastic moduli, Poisson's ratios, and friction coefficient are
difficult to directly characterize because of the small size, the single
yarn specimen preparation, and the soft resin. As a result, we manually
adjust the unknow material properties at this stage and the stress pre-
diction from the RVE is compared to the experimental data. One of the
best example comparisons is illustrated in Fig. 8 when E1, E2, and µ are

GPa40 , MPa15 , and 1.0, respectively. The RVE simulation agrees very
well with the experiment result when the shear angle is less than 0.6
radian, validating the 2-step approach developed. When the shear angle
further increases, the discrepancy between the simulation and the ex-
periment becomes large, indicating the necessities for a proper cali-
bration algorithm, which will be elaborated on in Sec. 4.

4. Bayesian calibration of yarn material properties

In this section, we employ experimental data to i( ) Estimate the
calibration parameters of our RVE simulator (i.e., E1, E2, and µ), i( )
Determine whether the RVE simulator is biased, and iii( ) Build a cheap-
to-evaluate emulator to replace the expensive RVE simulator during
macroscale analyses. To this end, we adopt a modularized version of the
Bayesian calibration framework of Kennedy and O'Hagan (KOH)
[43–45]. The Bayesian model updating formulation of KOH is:

= + +x x xz ( ) ( , ) ( ) (4–1)

where xz ( ) is the true response (which corresponds to experimentally
measured stresses in our case), =x [ , , ]T

11 22 12 are the controllable
inputs, = E E µ[ , , ]T

1 2 are the true but unknown mesoscopic yarn
properties (i.e., the calibration parameters) that do not depend on x ,

x( , ) is the computer simulator, x( ) is the bias function, and is the

Fig. 7. Illustration of the yarn cross-section deformation upon compression along the width direction: (a) Real material deformation mode, (b) FE de-
formation mode with transversely isotropic material model, and (c) FE deformation mode with decoupled material model in FE.

Fig. 8. One bias-extension simulation example using the RVE with =E GPa401 , =E MPa152 , and =µ 1.0: (a) Illustration of the von Mises stress contour on
the RVE; (b) Comparison of the simulation and experiment true shear stress.

W. Zhang et al. Composites Science and Technology 170 (2019) 15–24

19



zero-mean Gaussian noise with unknown variance. 11, 22 denote the
normal true strain along the warp and weft yarns, and 12 represents
the shear angle of the fabric. It is noted that we have distinguished
between the generic2 values of and their true (but unknown) values
that correspond to our specific material by placing superscripts on the
latter ones. The motivation behind including x( ) in Eq. 4 1 is that
no computer simulator is a perfect representation of the corresponding
physical system due to, e.g., our lack of knowledge, simplifying or in-
correct assumptions, and approximations made to address computa-
tional costs.

The goal of Bayesian calibration is to combine three data sources
(experiments, simulations, and prior knowledge from our experience in
the field) to estimate the unknowns. As illustrated in Fig. 9, this process
starts by replacing the expensive mesoscopic RVE simulator with the GP
emulator (aka metamodel) x( , ). Then, the uniaxial tension experi-
mental data and the prior knowledge on the mesoscopic yarn properties
p ( ) are used to fit the GP emulator x( ) to the bias function. Our
reason for introducing x( ) is that even if the true calibration para-
meters were known (which are not) and used in simulations, the stress
predictions from the RVE simulator might not match with the experi-
ments. At the third stage, the joint posterior distribution of the meso-
scopic yarn properties dp ( | ) are obtained given d, i.e., the collection of
experimental and simulation data. Finally, the updated emulator is
compared against the bias-extension experimental data for validation.
Once validated, the updated emulator is used as the constitutive law to
predict the stress response of the RVE under any strain state. In the
following subsections, we elaborate on each module and provide an
extensive tutorial on GP emulation for interested readers in the sup-
porting materials.

We refer the interested readers to [46–49] for detailed discussions
on Bayesian updating of computer simulators but note here that the
adopted Bayesian formulation: i( ) quantifies the uncertainty in the es-
timated calibration parameters by finding their joint posterior dis-
tribution rather than just a point estimate, and ii( ) accounts for prior
information and various sources of uncertainty including noise, lack of
knowledge such as simulator biases, and data scarcity associated with
both experiments and computer simulations.

4.1. Module 1: GP modeling of mesoscopic RVE simulator

The mesoscopic RVE simulator is computationally expensive, ren-
dering Bayesian calibration (where the stress needs to be evaluated for
many combinations of x and ) infeasible. For instance, the simulation
illustrated in Fig. 8 took 2 hours on 6 12-core Xeon processors. To
address this issue, we replace the simulator with the GP emulator

x( , ) where =x [ , , ]T
11 22 12 and = E E µ[ , , ]T

1 2 are defined as

before. Once x( , ) is fitted, it can be used for fast prediction of the
homogenized mesoscopic stress components = [ , , ]11 22 12 for arbi-
trary combinations of x and .

To fit x( , ), we design 200 space-filling experiments with Sobol
sequence [50] in the six-dimensional space of x[ , ] with the input
ranges of [ 2, 2]%11 , [ 2,2]%22 , radian[0, 1]12 ,
E GPa[20,60]1 , E MPa[5,25]2 , and µ [0.15, 3]. The ranges for are
chosen wide enough to ensure that the true (but unknown) calibration
parameters are covered. The ranges for x are also selected wide enough
to cover the stress values that will be experienced during double-dome
preforming simulation in Sec. 5 where x( , ) will be used as a con-
stitutive law. In each simulation, the material properties are set as i
( = …i 1, ,200) while xi is applied as PBCs. To apply the deformation,
the normal true strain along the warp and weft yarns 11 and 22 are
first applied and then the RVE is sheared to conform to the target shear
angle 12.

4.2. Module 2: priors on the bias function and calibration parameters

In this module, the experimental data and the priors on x( ) and
are used to estimate the parameters of the bias function and the noise
variance by maximizing the likelihood that the experimental data
follow the formulation in Eq. 4 1 [43,46,48,49,51].

Our experimental data consist of stress-strain curves at 23 °C from
the uniaxial tension and bias-extension tests [52], see Fig. 11. We hold
out the bias-extension data for validation and use 20 equally-spaced
data points from the uniaxial tension experiment for calibration. The
reasons for using 20 data points rather than the entire curve are that i( )
Computational errors and expenses rapidly increase in Bayesian ana-
lyses as the dataset size increases, and ii( ) 20 points sufficiently char-
acterize the curve in Fig. 11(c): The stable tensile stage contains in-
formation on E1 while the initial undulation stage (which is
significantly influenced by the yarn interactions) embodies information
on E2 and µ.

It should be noted that the stress from the RVE simulation is ex-
pressed in the orthogonal coordinate which is aligned with the initial
yarn directions. The stress from the bias-extension test, however, is
expressed in the coordinate that aligns 45° from the initial yarn

Fig. 9. Modular Bayesian calibration: The approach has four stages and enables estimating the potential simulator bias as well as the joint posterior distribution of
the calibration parameters.

Table 2
Prior and posterior distribution of the calibration parameters: The priors
on = E E µ[ , , ]1 2 are uniform and denoted with Uni lower bound upper bound( , ).
Unlike the prior, the posterior distributions of the calibration parameters are
neither uniform nor independent.

Prior Distribution Posterior Mode

E Uni GPa(20,60) ,1 E Uni MPa(5,25)2 , µ Uni (0.15, 3) GPa
MPa

46.8
23.5

1.3
2 In a computer simulation, one can choose almost any values for E E, ,1 2 and

µ .
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directions. To account for the coordinate transformation, the summa-
tion of three stress components from the RVE simulation, i.e.,

++( )
2 12

11 22 , is calculated and compared with the stress from the ex-
periment. Due to the symmetry between 11 and 22 in the bias-exten-
sion test, the summation can be simplified to +11 12.

We place a GP prior on the bias function which essentially implies
that the posterior of x( ) is also a GP. GP priors have been successfully
used as priors in a wide range of applications to model the potential
biases of computer simulators where a prior the functional form of the
bias function is unknown [43,46,53–57]. Additionally, as listed in
column one in Table 2, we choose uniform prior distributions (based on
our experience) for which cover the entire range where x( , ) is
fitted over. Uniform prior distributions are preferred (over, e.g., normal
distribution) since we only know the range of the values that can take
(and not, e.g., their most likely values). These ranges are chosen wide
enough to ensure that the true (but unknown) calibration parameters
are covered. Additionally, this choice guarantees that large variances
are used to avoid diminishing the effect of the experimental data on the
joint posterior distribution of (see Eq. 4 2).

4.3. Module 3: posterior of the calibration parameters

Following Fig. 9, the posterior distribution of is obtained via
Bayes' theorem after the two GP metamodels x( , ) and x( ) are fitted
and the noise variance is estimated:

= ×d dp p p( | ) ( | ) ( ) (4–2)

where d represents the vector of all the available data from both si-
mulations and experiments, dp ( | ) is the posterior of the calibration
parameters, dp ( | ) is the Gaussian likelihood, p ( ) is the prior, and is
the normalizing constant that ensures dp ( | ) integrates to 1.

Summary statistics of the posterior distribution are provided in
Table 2. To obtain more insight into the posterior distributions, the
marginal distribution of each parameter is calculated by integrating out
the rest of the parameters from the posterior distribution:

= ×d dp p p d( | ) ( | ) ( )i i
i (4–3)

where i denotes without the ith element. The results are shown in
Fig. 10 and demonstrate that the marginal variances are relatively large
which was expected since i( ) there are multiple sources of uncertainty
such as experimental and simulation errors and simulator bias, and ii( )
limited data are employed in the Bayesian analysis: the calibration data
as shown by the dashed black line in Fig. 11(a) is only available on a
three dimensional (3D) curve in the 3D strain space. It should be noted
here that the upper bound on E1 is smaller than the homogeneous
longitudinal Young's modulus of general cured carbon fiber composite
yarns with 50% fiber volume fraction (i.e., 110 GPa) because (i) the
fiber volume fraction in the uncured prepreg is smaller than that in the

cured prepreg since the resin flows out under pressure in curing, and
(ii) the fabric in the uncured prepreg is loose, i.e., the fiber have local
waviness which reduces the yarn's longitudinal modulus under tension.
Research work in Ref. [58] shows a similar uncured prepreg yarn's
longitudinal modulus of around 46.4 GPa.

4.4. Module 4: posterior of the responses

To predict the stress for an arbitrary deformation state, Eq. 4 1
can be employed. However, since is not known, is used in the right-
hand side (RHS) of Eq. 4 1. To eliminate the dependency of the RHS
on , the RHS is then integrated with respect to the posterior dis-
tribution of . This integration is generally done via, e.g., Monte Carlo
methods and quadrature rules [50,57,59–61]. In this work, we use
quasi Monte Carlo.

Fig. 11 illustrates the predictions of the orthogonal stress compo-
nents by the updated emulator under various deformation states. The
normal stress 11 is plotted against the normal true strain along warp
and weft yarns, 11 and 22, for two different values of 12 in Fig. 11 (a).
Similarly, the shear stress 12 is plotted in Fig. 11 (b) where its sym-
metry with respect to 11 and 22 is evident. Compared to 12, 11 is less
sensitive to 12. It can also be observed that 12 monotonically increases
as any of the strain components increase. This monotonic behavior is
also observed in Fig. 11 (a) but is slightly compromised when there is
no shear strain (i.e., in the red surface). This small inconsistency may be
due to i( ) dynamic explicit numerical issues such as the artificially high
strain rate, which reaches to 20/s under the maximum deformation
condition, to reduce the run-time in the RVE simulation, and ii( ) lack of
simulation data with very small 12 which results in extrapolation
during the Bayesian calibration.

In Fig. 11 (c) the uniaxial tension test is plotted. Since this test was
used for calibration, the model predictions are expected to match the
test data. In Fig. 11 (d) the bias extension test and our predictions are
plotted. Since this data are not used in calibration, this figure illustrates
that the calibration has been effective in learning the stress-strain be-
havior. The posterior of the resulting GP model (i.e., the left-hand-side
in Eq. 4 1) can now be used as the constitutive law of integration
points in the macroscopic preforming simulations.

To demonstrate the effect of including the bias function in
Eq. 4 1, we illustrate its posterior distribution in Fig. 12 under the
two experimental setup conditions. In the uniaxial tension test, the
posterior of x( ) is positive, indicating that the stress predictions from
the RVE simulator are generally smaller (around 10%, compare the y-
axis of Figs. 11(c) and 12(a)) than the experimentally measured
stresses. The slight curvature in Fig. 12(a) is mainly due to numerical
errors and noise. In the bias extension test, the posterior of x( ) is in-
itially positive and then negative. This implies that our RVE simulator
first underestimates the stress and then overestimates it. The under-
estimation is due to neglecting the large static friction coefficient (due

Fig. 10. Marginal posterior distributions on the calibration parameters: The posterior and prior are indicated with solid blue and dotted red lines, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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to the large relative sliding/rotation between the prepreg yarns during
preforming) and only including the dynamic coefficient in the RVE. The
reason behind overestimation is that in the real specimen, when the
shear deformation is very large and closed to shear locking, there might
be some slight sliding and “pull-out” of yarns to reduce the pure shear
resistance. This deformation mode is not measured during the experi-
ment and is neglected in the RVE as it only happens near the shear
locking. As a result, the RVE model will overestimate the stress pre-
diction when the shear deformation is large.

5. Integration of the mesoscopic emulator with macroscopic
preforming simulation

As the constitutive law of the 2 × 2 twill prepreg with uncured
thermoset resin, the mesoscopic stress emulator obtained in Sec. 4, is
implemented into Abaqus Explicit in the non-orthogonal coordinate
[14] as VUMAT for the macroscopic preforming process simulation. For
this multiscale constitutive law, the deformation input consists of the
normal true strain 11 and 22 along the warp and the weft yarn di-
rections, and the shear angle '12. These inputs are all calculated using
the non-orthogonal coordinate algorithm. The predicted stress compo-
nents = [ , , ]11 22 12 are obtained in the Abaqus orthogonal material
coordinate directly. Hence, the constitutive law does not require co-
ordinate transformation of the stress and has the following format:

=
( , , )
( , , )
( , , )

11
22
12

11 11 22 12

22 11 22 12

12 11 22 12 (6–1)

We note that our emulator is learned over the range of
[ 2, 2]%11 , [ 2,2]%22 , radian[0,1]12 . Both tensile and com-

pressive behaviors are considered in the emulator. This emulator is
applied to each of the five individual integration points in the through-
the-thickness direction of the S4R shell element, and therefore, the
bending behavior of the prepreg is captured in the preforming simu-
lation. For the deformation states outside these ranges, the prepreg will
transfer into the shear locking state, and the VUMAT employs the shear
locking state algorithm from the decoupled non-orthogonal model [14].

The macroscopic double-dome benchmark preforming experiment is
simulated with the multiscale VUMAT for the prepreg with uncured
thermoset resin at 23 °C. The simulation setup is illustrated Fig. 13 (a):
One layer of prepreg in ± 45 fiber orientation is formed in this process
where the displacement of the punch is 90 mm, and the binder force
increases linearly from 4000 N to 8200 N based on the experimental
measurements. The thickness of the prepreg layer is orders of magni-
tude smaller compared to its length and width, so the prepreg is dis-
cretized by S4R shell elements to reduce the computational cost. The
tools are simulated as rigid bodies, hence, their element type will not
affect the simulation results. S3 elements are selected to discretize the
tools because of their excellent auto-mesh capability for complex geo-
metries. The friction coefficient between the tool and the prepreg is set
to 0.3 according to the experimental measurement. This friction coef-
ficient, as well as the one between the yarn in the mesoscopic RVE, is
the constant dynamic one. The reason is that the preforming process
leads to large prepreg deformation which, in turn, results in large
sliding between the tools and prepreg at the macroscale and large
sliding and rotation between the yarns at the mesoscale. Hence, the
static friction is neglected.

The simulation result is compared against the one obtained from the
tension-shear decoupled non-orthogonal material model developed in
Ref. [14] which is also calibrated via the same experimental data. The
final prepreg sheet geometry and the yarn angle distribution results are
demonstrated in Fig. 13 (b) together with the real preformed part. The
draw-in distance and the yarn angle at the sampling locations from the
simulation and the experiment are listed in Table 3. The comparison
indicates that our method with tension-shear coupling leads to around
4% and 5% improvement for draw-in and average yarn angle at loca-
tions A to F over the decoupled model.

The punch force-displacement curves from the two simulation cases
and the experiment are compared in Fig. 13 (c). The plots demonstrate
that the new multiscale preforming simulation method predicts the
punch force nearly the same as the experimental one compared to the
simulation using the decoupled material model, which underestimates
the experimental punch force by around 26%. The small discrepancy
between the forces from the new simulation method and the experi-
ment when the punch displacement reaches to over mm70 may be

Fig. 11. Posterior mean of the responses: (a) Normal stress as a function of normal true strain along the yarns for two different shear angles. (b) Shear stress as a
function of normal true strain along the yarns for two different fabric shear angle. (c) Uniaxial tension test used in calibration vs. our predictions. (d) Bias extension
test which is not used in calibration vs. our predictions.

Fig. 12. Posterior of the bias function: The posterior is obtained under two loading conditions (a) uniaxial tension, and (b) bias extension.
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caused by the negligence of the prepreg thickness variation by the shell
elements in the simulation. The small force discrepancy when the
punch displacement ranges from 20 to mm50 , however, may be resulted
from the fact that the temperature at some locations of the prepreg has
not reached to 23 °C completed at the initial stage of the preforming,
leading to softer material behavior compared to the one for the simu-
lation.

As a summary, our newly developed Bayesian calibrated material
model with tension-shear coupling for multiscale simulation of prepreg
preforming can predict the draw-in distance and the yarn angle varia-
tion on the preformed prepreg. More importantly, it also predicts the
punch force history with high accuracy. This new multiscale model,
therefore, has stronger predictive capability and can serve as a powerful
tool for part performance prediction, process parameters optimization,
material design, and defect analysis for future preforming works.

6. Conclusion and future work

In this paper, we developed a numerical Bayesian-calibrated char-
acterization method for identifying material behavior of a prepreg in
preforming based on a new multiscale material model consisting of the
mesoscopic RVE and the macroscopic process simulation. This method
can take the tension-shear coupling effect into consideration, which is
important for accurately predicting preforming force and the resulting
blank shape. In our approach, a new 2-step FE modeling technique is
first developed to generate the mesoscopic prepreg RVE structure. This
RVE is then utilized to identify the complex tension-shear coupling
effect of the woven prepreg at the condition of the preforming. The
Bayesian calibration is applied to the RVE simulator to identify the
mesoscopic yarn material properties, which are difficult to be directly
measured via physical tests. The calibration algorithm also provides an
inexpensive but accurate GP emulator which replaces the computa-
tionally costly mesoscopic RVE simulator that is used at each integra-
tion point in the macroscopic preforming simulation. For the multiscale

part, the mesoscopic stress emulator is implemented into Abaqus
Explicit in the non-orthogonal coordinate as VUMAT so that the ten-
sion-shear coupling effect of the woven prepreg can be considered in
the mesoscopic preforming simulation. The comparison for preforming
a double-dome geometry used in the benchmark test [29] between the
simulation with the new multiscale material model, the tension-shear
decoupled non-orthogonal model, and the experimental result indicates
that our new model is superior to the decoupled one and can reliably
predict draw-in distance, yarn angle distribution, and punch force in
the preforming process.

We calibrated the GP stress emulator via the uniaxial tension test
and validated it against the bias-extension test. Employing other tests
with different loading conditions such as biaxial tension will provide
additional evidence of the model validity. Additionally, we used ma-
terial properties at constant temperatures while this is not the case in
the experiments where the cooling effect from tools and air affects
prepreg mechanical behaviors. Considering temperature-dependent
properties to achieve a higher accuracy is recommended for future
work. Moreover, the multiscale method presented here is established in
a hierarchical scheme, so the path dependency of the prepreg de-
formation is neglected. The concurrent scheme can be utilized in future
work for the multiscale preforming simulation to model the prepreg
behavior with higher fidelity.
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