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Abstract

Physics-informed neural networks (PINNs) are increasingly employed to replace/augment traditional numerical methods in
olving partial differential equations (PDEs). While state-of-the-art PINNs have many attractive features, they approximate a
pecific realization of a PDE system and hence are problem-specific. That is, the model needs to be re-trained each time the
oundary conditions (BCs) and domain shape/size change. This limitation prohibits the application of PINNs to realistic or
arge-scale engineering problems especially since the costs and efforts associated with their training are considerable.

We introduce a transferable framework for solving boundary value problems (BVPs) via deep neural networks which can
e trained once and used forever for various unseen domains and BCs. We first introduce genomic flow network (GFNet), a
eural network that can infer the solution of a BVP across arbitrary BCs on a small square domain called genome. Then,
e propose mosaic flow (MF) predictor, a novel iterative algorithm that assembles the GFNet’s inferences for BVPs on large
omains with unseen sizes/shapes and BCs while preserving the spatial regularity of the solution. We demonstrate that our
ramework can estimate the solution of Laplace and Navier–Stokes equations in domains of unseen shapes and BCs that are,
espectively, 1200 and 12 times larger than the training domains. Since our framework eliminates the need to re-train models
or unseen domains and BCs, it demonstrates up to 3 orders-of-magnitude speedups compared to the state-of-the-art.

2021 Elsevier B.V. All rights reserved.

eywords: Neural networks; Transferable deep learning; Scientific machine learning; PDEs; Navier–Stokes equations

1. Introduction

Partial differential equations (PDEs) are ubiquitously used in sciences and engineering to model physical
henomena. Two notable PDEs that have far-reaching applications are the Navier–Stokes (NS) equations which
odel the motion of viscous fluids [1] and Laplace equation which extensively appears in fluid dynamics,

lectrostatics, and steady-state heat transfer [2]. Solving such PDEs on large domains with arbitrary initial and
oundary conditions (ICs and BCs) relies on numerical methods such as finite element (FE) [3] and finite difference
FD) [4]. While these methods are extremely powerful, they are computationally expensive. Because of these high
osts, researchers face the challenge of drawing conclusions using a limited number of time-consuming studies. For
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instance, NASA’s CFD vision 2030 [5] estimates that achieving a 24-hour turnaround time on a wall-modeled large
eddy simulation of a full-wing at Reynolds Re = 107 requires 180 PFlops/s which is only achievable on the most
powerful supercomputer today. Such high costs make it infeasible to conduct compute-intensive studies such as
uncertainty quantification (UQ) or airfoil shape optimization. To address this challenge, particularly in large-scale
and inverse problems, simulations are augmented with inexpensive surrogates.

Although a wide range of surrogates such as Gaussian processes (GPs) [6–8] and trees [9,10] are available, most
recent applications of surrogate modeling employ deep neural networks (DNNs) [11–21]. The increasing use of
DNNs in emulation is largely because they have extremely high learning capacity which enables them to distill
highly nonlinear and hidden features and relations from a training dataset without explicit instructions. In addition,
DNNs are highly scalable and versatile. For instance, while DNNs can naturally build regressors/interpolators from
large and high-dimensional data, GPs rely on numerical methods such as low-rank matrix approximation [8] to
handle datasets with more than ∼ 5000 samples [22,23]. Or, unlike trees, DNNs can easily handle both classification
and regression/interpolation problems with high accuracy [13].

A major driver in using DNNs for surrogating PDE-governed systems is automatic differentiation (AD) [24]
which allows the easy, systematic embedding of a system’s governing equations in a network’s training stage to
build physics informed neural networks (PINNs) [25]. This inductive bias not only reduces the reliance on training
data obtained from traditional solvers, but also increases the adherence of the DNN to the physics of the problem
and dispenses with discretization errors (since AD is exact [26]). To demonstrate such a physics-informed training
process, consider the 2D boundary value problem (BVP):

∇
2u(xxx) = 0, xxx ∈ Ω

u(xxx) = g(xxx), xxx ∈ ∂Ω
(1)

where xxx = [x, y], ∇
2 is the Laplacian operator (∂2/∂x2

+∂2/∂y2), Ω denotes the domain, and g(xxx) is the boundary
alue function. When training a DNN that approximates u(xxx), the loss function can be designed as:

L(θθθ ) = L1(θθθ ) + αL2(θθθ ) + βL3(θθθ ),

L1(θθθ ) =
1

N1

N1∑
i=1

(u(xxx i ) − N (xxx i |θθθ ))2 ,

L2(θθθ ) =
1

N2

N2∑
j=1

(
∇

2N (xxx i |θθθ )
)2

,

L3(θθθ ) = |θθθ |
2

(2)

where θθθ are the parameters of the network (weights and biases), N is the DNN approximation, L1(θθθ ) is the network’s
rror in predicting the available data on the solution (these data can be on ∂Ω or in Ω ), L2(θθθ ) is the residual error
hich enforces N to satisfy the Laplace equation on some randomly selected points (aka collocation points) in
, L3(θθθ ) denotes Tikhonov regularization that prevents overfitting, and α and β are constants that control the

ontributions of, respectively, L2(θθθ ) and L3(θθθ ) to L(θθθ ). L2(θθθ ) in Eq. (2) involves partial derivatives which can be
nalytically calculated via AD.

Training a DNN that surrogates the solution of PDEs can be a time-consuming and challenging task primarily
ecause (1) obtaining training data via high-fidelity simulations is expensive, (2) designing an efficient network
rchitecture is an iterative process, (3) optimizing the network’s parameters (such as weights and biases) is
emanding, (4) calculating the residual loss is computationally costly because each time a differential operator is
pplied to the network, it almost doubles the number of computations associated with backpropagation [13,27], and
5) choosing the optimizer’s parameters (such as batch size and learning rate) as well as balancing the contributions
f different loss components to the overall loss (e.g., α and β in Eq. (2)) are iterative processes. These challenges
re exacerbated when training DNNs that need many parameters to accurately approximate the solution of complex
DEs (such as the NS equations) in large domains.

We argue that the benefits of DNNs that approximate PDE-governed systems outweigh the high costs and
hallenges associated with their training if the DNNs are transferable. Unfortunately, existing methods [28–32]
ail in this regard, i.e., there is currently no mechanism for estimating the solution of PDEs with a pre-trained

x x
NN. For example, a PINN that approximates u(xx) in Eq. (1) would be largely useless if Ω and g(xx) change.
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Fig. 1. (Color Online) Transferable learning of a PDE: We train our network in a small domain of size 1 × 1 for a wide range of boundary
conditions. We then use the network to solve the Laplace equation in a domain that is 1200× larger. Prediction time is almost 3 hours on

single NVIDIA V100 GPU.

To bridge this gap, we develop a novel framework that builds a transferable DNN surrogate that solves
DEs in unseen domains with arbitrary BCs (see Fig. 1). We present our idea in the context of flow prediction
i.e., surrogating the solution of the NS equations) but note that the framework is readily applicable to other PDE
ypes such as the Laplace and Poisson equations. The source codes and pre-trained models of our framework can
e downloaded at https://gitlab.com/UCI--CFD/mosaicflow.git.

For on-the-fly prediction of the flow in an unseen large domain with unseen BCs, we first decompose the domain
nto small subdomains called genomes. Then, we predict the flow in each genome with a pre-trained DNN, called
enomic flow network (GFNet), such that the iterative assembly of these genome-wise predictions approximates
he flow in the large domain. We denote this assembled flow as a mosaic. More specifically, this paper makes the
ollowing contributions:

• We introduce GFNet which can solve a BVP with arbitrary BCs on a small square domain called genome. We
design GFNet’s architecture based on the characteristics of the PDE and show that such a design significantly
improves accuracy. For instance, our GFNet is twice more accurate than the conventional fully connected (FC)
architecture for solving the Laplace equation (Section 4.1). For learning the NS equations, we further enforce
the input BC in GFNet and reduce the generalization error by nearly 70% compared to DeepONet [33] and
Fourier Neural Operator (FNO) [31] (Section 4.3).

• We develop mosaic flow (MF) predictor, a novel iterative algorithm based on the continuous Schwarz
alternating algorithm [34] that iteratively assembles GFNet’s inferences to predict the solution of the PDE
system for unseen domains spanned by genomes with unseen BCs. We show that MF predictor can scale up
GFNet’s inferences to domains ∼1200× and 12× larger in the case of, respectively, Laplace and NS equations
(Section 4). Moreover, MF predictor is independent of the neural network model used as GFNet. We compare
our model with DeepONet [33] and FNO [31] and demonstrate that it reduces the error by nearly 6 times
when employed by MF predictor to predict unseen flow features.

• With GFNet and MF predictor, we eliminate the need to re-train a DNN for unseen domains or BCs. This
transferability delivers 1–3 orders of magnitude speedup compared to the start-of-the-art PINN for solving the
Laplace and NS equations while achieving comparable or better accuracy (Section 4).

• Our GFNets are not tailored to specific applications and hence can be used by others. This reusability saves
energy and benefits researchers with limited access to GPUs.

2. Related work

Existing approaches for building DNNs that solve PDEs employ a wide range of training mechanisms and
network architectures. These choices largely depend on the application and the characteristics of the PDEs. The
architectures are typically built with fully connected (FC), convolutional, or recurrent [35–37] layers. In many
works a combination of these layers, with or without residual connections [38], are employed as well. For instance,
networks similar to Resnet [38] and UNet [39], whose building blocks are convolutional neural networks (CNNs),

are generally the backbone of super-resolution frameworks that aim to reconstruct a high-resolution solution from a
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coarse solution [29,40]. Such networks have also been trained in the Fourier space to learn a PDE operator using the
modal space [31,41]. CNNs, which may also include FC layers, are extensively used as surrogates for predicting
steady laminar flows around 2D and 3D objects [42], estimating 2D flows around specific airfoils [43,44], flow
visualization [45], and many other applications [46–49].

Solving PDEs via CNN-based networks is data-efficient (due to parameter sharing and learning spatially invariant
ernels [11,50–52]), but it requires developing a mechanism for interpolating the solution (and its gradients) on
on-grid points [53]. One strategy to avoid such interpolation errors is to only employ FC layers. This strategy
as been used for inverse estimation of PDE coefficients [25], inverse estimation of flow fields given observations
n a passive scalar [27], predicting the Reynolds stress in Reynolds-averaged NS simulations [54,55], and solving
oisson equation and eigenvalue problems [56]. Networks based on FC layers have also been reformulated for
ariational learning (to improve predictions on the boundaries) [30,57], surrogating fractional PDEs (where AD
annot calculate residual errors) [58], emulating long time-dependent PDEs (where long temporal features render
he training very difficult) [32], and learning operators that map functions to functions [33,59,60].

Regardless of the architecture, existing works lack transferability, i.e., they build models that are largely useless
f the domain and BCs associated with the PDE system are modified. This important issue has been rarely addressed.
NNs that learn a PDE operator [33,61], can in theory handle varying BCs but they are not domain-agnostic and

heir applications thus far have been limited to simple PDEs over small, fixed domains. In [62], CNNs are used to
olve the 2D Poisson equation on rectangular domains with different aspect ratios. In [63], the DNN is trained to
olve the NS equations over backward-facing steps with varying heights. In [64], the DL model infers the lift and
rag of various elliptic objects with different aspect ratios. In all these works, the geometry type (e.g., rectangle or
llipse) is fixed and only varies within a very limited range with one parameter. A few studies [43–45,49,65] have
roposed more general techniques to embed geometry information into the training stage of a DNN such that it can
redict the quantities of interests in unseen domains. However, the overall domain size is still fixed, grid data are
equired, and the variability of the objects is limited to specific applications.

Since the training costs of a PDE-solving DNN are generally high, parallel and distributed computations have
een explored in their training [28]. However, the overall training costs are still high given the iterative and
ombinatorial process of tuning the architecture, optimization parameters, and loss components. To justify these
igh training costs, a DNN is expected to be transferable across multiple applications.

. Transferable learning of PDEs

Our goal is to approximate the solution of the following homogeneous BVP in an arbitrary domain Ω for a wide
range of g(xxx):

H (u(xxx)) = 0, xxx ∈ Ω ,

u(xxx) = g(xxx), xxx ∈ ∂Ω ,
(3)

here H (·) denotes a partial differential operator composed of spatial derivatives. Henceforth, we drop the
ependence of u to xxx for notational convenience. We highlight that while Eq. (3) is scalar, our approach is directly
pplicable to PDE systems such as the NS equations, see Section 4.2.

Building a single DNN that solves the BVP of Eq. (3) in any domain and under any BC is an extremely
ifficult (if not infeasible) learning task because considering arbitrarily large variations in domains and BCs in
raining drastically amplifies the challenges described in Section 1. In our framework, we solve this difficult task
y decomposing it into two simpler (but highly coupled) tasks that correspond to (1) training a GFNet that solves
he BVP in a genome (i.e., a small square) given any g(xxx), and (2) building MF predictor that approximates the
olution in any unseen large domain that can be spanned with genomes by stitching the genome-wise predictions
ade by the pre-trained GFNet. The advantage of our approach is that predicting the solution of the BVP in an

nseen domain only relies on task 2, i.e., there is no need to train or re-train a DNN anymore.
Our task decomposition strategy is motivated by curriculum learning [66] which was originally developed for

nimal training [67] where difficult tasks are divided into simpler tasks which are easier to learn and collectively
ake up the original task. In Section 3.1 we demonstrate that this approach is also applicable to solving BVPs.

hen, we elaborate on how to build a GFNet and an MF predictor in Sections 3.2 and 3.3, respectively.

4
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Fig. 2. (Color Online) Decomposition of a BVP: The Laplace equation is solved in Ω = [0, 2] × [0, 1] with three methods: a direct and
two iterative approaches. The iterative approach that leverages an auxiliary genome converges to the direct solution 12× faster.

3.1. BVP decomposition: Why Mosaic works?

The BVP in Eq. (3) is well-posed if the solution, u, is unique. For such a BVP, u on any arbitrary sub-domain
inside Ω also forms a well-posed BVP. Fig. 2(a) illustrates this relation for the Laplace equation where the domain
Ω is split into two genomes, namely, Ω1 and Ω2. The boundaries of these genomes are denoted by ∂Ω1 and ∂Ω2
which share the border ∂Ω1 ∩ ∂Ω2 in the middle of Ω (marked blue in the figure). Once the Laplace equation is
solved in Ω , u will be available on ∂Ω1 ∩ ∂Ω2. We can now solve two BVPs: one in Ω1 and the other in Ω2 to get
the solutions u1 and u2, respectively. The above well-posedness relation indicates u1 = u|Ω1 and u2 = u|Ω2 .

Conversely, if we can find u1 and u2 while ensuring that the PDE is satisfied on the shared border, i.e., ∇
2u = 0

on ∂Ω1 ∩ ∂Ω2, then we will have u since u = u1 ∪ u2. Indeed, to find u1 and u2 we need to solve two BVPs (one
n Ω1 and the other in Ω2) both of which require u on ∂Ω1 ∩ ∂Ω2. Since u is unknown, we propose an iterative
trategy to find it on the shared border: we first randomly assign values to u on ∂Ω1 ∩ ∂Ω2 and solve two BVPs
n Ω1 and Ω2 to find u1 and u2, respectively. Then, we use u1 and u2 to update our initial guess and repeat this
rocess until a convergence criterion is met (e.g., until values on ∂Ω1 ∩ ∂Ω2 negligibly change across consecutive
terations). As illustrated below, we can dramatically accelerate the convergence speed of this simple iterative
pproach via the continuous Schwarz alternating algorithm (aka Schwarz method) [34] which greatly increases
he pace of information propagation from ∂Ω to Ω using an auxiliary genome that overlaps with Ω1 and Ω2 (see
ig. 2(c)).

We illustrate the Schwarz method by solving the BVP in Eq. (1) in a domain of size 2 × 1 (i.e., Ω = [0, 2]×[0, 1])
x 2 2
ubject to the boundary condition g(xx) = x − y + xy. As illustrated in Fig. 2(b), we first use algebraic multi-grid

5
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(AMG) [68] to directly find the ground truth, i.e., u in Ω . Then, we use AMG within both iterative approaches and
show that while both the simple iterative approach and Schwarz method converge to the ground truth, the latter is
significantly faster.

Since Ω is of size 2 × 1, we decompose the domain into two basic genomes of size 1 × 1 that share a single
order, see Fig. 2(c). In the first iterative strategy, we initialize the shared border with zero values for u, solve for
1 and u2 using AMG, and exchange data across the border. This iterative process converges in 300 iterations when

he mean absolute error (MAE) compared to the direct solution drops below 1e-14.
In the Schwarz method, after finding u1 and u2, we update u on the shared border by solving the Laplace equation

n an auxiliary genome whose BCs on its two vertical borders are inside Ω1 and Ω2, see Fig. 2(c). This approach
ntroduces a stronger and more effective coupling across the basic genomes which, in turn, accelerates the rate of
nformation propagation from ∂Ω to the shared border. The higher rate of information propagation increases the
onvergence rate by almost 12 times compared to the first iterative strategy, see Fig. 2(d).

For the general elliptic PDE,

H (u(xxx)) = ∇ · (α∇u) − f = 0, xxx ∈ Ω ,

u(xxx) = g(xxx), xxx ∈ ∂Ω ,
(4)

here α(xxx) is a variable coefficient in space and f (xxx) denotes the source term, the iterative solution by Schwarz
ethod converges to the PDE’s exact solution [69,70]. To illustrate this, we formulate the approximate solution

fter solving BVP in the i th genome (Ωi ) as follows [71]

u
k+

i
Ng (xxx) = u

k+
i−1
Ng (xxx) + Pi (u∗(xxx) − u

k+
i−1
Ng (xxx)), xxx ∈ Ω (5)

here Ng denotes the total number of basic and auxiliary genomes, u∗ is the exact solution for the given BC, and
k+

i
Ng is the solution after solving BVP in the i th genome at the kth iteration. We define one iteration as updating

all genomes exactly once. In Eq. (5), Pi is a projection operator mapping the error u∗
−uk+(i−1)/Ng to a function that

has zero values outside Ωi . We refer readers to [71] for more details about Pi ’s proof of existence and properties.
Applying Eq. (5) to all the genomes in one iteration yields the error propagation map [71],

|u∗
− uk+1

| = |

Ng∏
i

(I − Pi )| |(u∗
− uk)|, (6)

where the coefficient E = |
∏Ng

i (I − Pi )| prescribes how fast the error decays. It can be proved that E < 1 for
general elliptic PDEs and this is independent of the numerical method (e.g., FE, FD, etc.) used for solving the
genome-wise BVPs [69,70].

Our framework is akin to the Schwarz method, except for the following two aspects. First, instead of using a
numerical method we always use a single pre-trained GFNet to predict the solution in either the basic genomes
or the auxiliary genomes. Following Eq. (6), if GFNet’s generalization error approaches 0 (see Section 4.3 for the
definition of different error types), the prediction of our framework converges to the elliptic BVP’s exact solution.
Second, there is no mechanism in the original Schwarz method to define the proper arrangement of the overlapping
sub-domains. In MF predictor, we distinguish between basic and auxiliary genomes and propose general guidance
for placing genomes and ordering their updates (see Section 3.3).

3.2. Genomic Flow Network (GFNet)

The iterative nature of MF predictor requires a GFNet to be able to estimate the solution anywhere inside a
genome for a wide range of BCs. Hence, the inputs of GFNet are:

GFNet inputs: g(xxxbc
1 ), g(xxxbc

2 ), · · · , g(xxxbc
Nbc

)  
ggg of size Nvar × Nbc

, xxx
Ndim

here Nbc, Nvar and Ndim denote the number of points on the genome boundary, variables, and spatial dimensions,
espectively. We consider 2D problems in this work so Ndim = 2. In scalar PDEs such as the Laplace equation,
Nvar = 1 while Nvar = 3 for PDEs such as the incompressible NS equations studied in Section 4.2.

6
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In the above, ggg represents a discretized version of g(xxx) at the genome’s boundaries and xxx indicates the coordinates
f the point where GFNet predicts the solution, i.e., u(xxx) which has Nvar components. The loss function of GFNet is

adopted from Eq. (2) where the size of the training data (e.g., N1 and N2) and coefficients (e.g., α and β) are chosen
ased on the BVP. For instance, our studies indicate that while residual loss improves the accuracy of GFNet when
earning the Laplace equation, it reduces the accuracy in the case of the NS equations, see Section 4 for the details
nd our reasoning. Additionally, when residual errors improve the accuracy of GFNet, we introduce a mechanism
o adaptively (instead of randomly) choose the location of collocation points in the genome.

We design the architecture of GFNet based on the PDE. In linear PDEs such as the Laplace equation, u(xxx)
is essentially a linear combination of the discretized boundary function values, ggg (note that the solution can still
be non-linear if g(xxx) is a linear function). To preserve the linearity, we propose a novel linearity-preserving fully
connected (LPFC) architecture shown in Fig. 3(b). In LPFC, we pass the coordinates of the input point xxx through
multiple fully connected hidden layers and set the last hidden layer’s outputs, hhh, to have the same size as ggg. The
output of GFNet is a linear combination of ggg with hhh, i.e., ggg · hhh. With this configuration, hhh leverages the spatial
correlations in Ω and ggg · hhh enforces it to conform to the linearity of the PDE. For non-linear PDEs such as the
NS equations, we adopt a fully connected (FC) architecture where ggg and xxx are concatenated into one input vector
and passed through all the FC hidden layers, see Fig. 3(b). A detailed evaluation of LPFC and FC architectures is
presented in Section 4.

Since a GFNet takes ggg as an input, a wide range of well-posed (and ideally negligibly correlated) BCs must
be used in training. For linear PDEs such as the Laplace equation, the BVP has a unique solution as long as
the boundary function g(xxx) is smooth, i.e., its derivatives in H (·) exist. Hence, we use GPs to generate a smooth
function in 1D and then wrap that function around the perimeter of the genome, see Fig. 3(a). GPs are stochastic
processes that place a prior distribution on functions. By judiciously selecting the hyperparameters of their kernel,
we can generate a wide range of smooth functions that are minimally correlated. For highly nonlinear PDEs such
as the NS equations, the BCs must satisfy mass, momentum, and energy conservation laws which makes it highly
challenging to create well-posed BCs via a GP. Hence, we first solve the PDEs with realistic BCs on a large domain
and then extract solutions for small genomes embedded in the domain. This strategy is demonstrated in Fig. 3(a)
where the flow in a lid-driven cavity is swept by a genome while recording the flow on the boundary as well as
inside the genome (the cavity’s domain spans [0, 1] × [0, 1] while the genome has a size of 0.5 × 0.5). As argued
in Section 3.1, this procedure generates valid data since the flow on each genome’s boundary constitutes the BCs
for the BVP on that genome.

Note that the genomes in training and prediction have the same shape because GFNet does not learn the effect
of the genome’s shape. We can address this limitation by including the boundary’s geometrical information as input
but this is beyond the scope of this work.

3.3. Mosaic flow predictor

As detailed in Section 3.1 we can (1) convert a BVP in a large domain to multiple BVPs in genomes that cover
that domain and then solve these BVPs iteratively, and (2) employ auxiliary genomes to significantly accelerate
the convergence. Based on the above two attributes, MF predictor decomposes an unseen domain into two sets of
genomes, see Fig. 3(c). The first set consists of basic genomes that cover the entire domain and can overlap with
each other. The BCs on the border of basic genomes are either known (if the borders lie on the large domain’s
boundary) or must be inferred via MF predictor. The second set consists of auxiliary genomes that overlap with
the basic genomes to accelerate the propagation of boundary information into the domain, i.e., to speed up the
iterative process of estimating the unknown BCs of the basic genomes. We distribute these two sets of genomes
based on the following general guidelines. First, we arrange the basic genomes to cover the entire domain with
as little overlap as possible (g1 through g4 in Fig. 3(c)). Then, we place auxiliary genomes on the vertical and
horizontal shared borders of the basic genomes (g5 through g8 in Fig. 3(c)). Finally, we place an additional auxiliary

enome on every corner/region where four basic genomes connect/overlap (g9 in Fig. 3(c)). We have developed
his spatial genome distribution to balance the pace of information transfer (which directly affects convergence
peed) and implementation efforts. As we demonstrate in Section 4.2.3, for highly nonlinear PDEs such as the NS
quations, more auxiliary genomes are required to facilitate information propagation. In such cases, following the
bove procedure, we place the additional auxiliary genomes on the shared borders of other auxiliary genomes. We

ill explore more advanced techniques in our future works.
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Fig. 3. (Color Online) Primary steps of our framework for transferable PDE learning: Steps 1 and 2 are done only once and their cost is
fully amortized in step 3 which can be applied to unseen domains. (a) Training data are generated by either solving a BVP whose BCs are
ampled from a GP, or by sweeping the solution of the BVP in a large domain with a genome (the plot in method 2 corresponds to the
elocity magnitude in a lid-driven cavity simulation). (b) A GFNet takes the discretized boundary function ggg and xxx as inputs and outputs
he solution at xxx . We use LPFC and FC architectures for linear and non-linear PDEs, respectively. (c) Mosaic flow (MF) predictor estimates
he solution in an unseen domain by systematically coupling the predictions of a GFNet on basic and auxiliary genomes. Note that basic
enomes can overlap with each other and auxiliary genomes can be placed anywhere inside the domain (we have avoided these scenarios
o improve clarity).

MF predictor finds the solution in the genomes set by set using a pre-trained GFNet and iterates until convergence.
n one iteration, MF predictor updates all the genomes once in the order that the genomes are grouped and placed.
hat is, it first predicts for all the basic genomes, then infers auxiliary genomes covering the basic genomes’
orizontal and vertical borders, and at last updates the genomes overlapping the basic genomes’ corners. The
ationale behind this order is that, updating genomes with more boundary information (adjacent or close to boundary)
efore the ones with less information can maximize the pace at which the information is propagated to the domain’s
nterior. For instance, the basic genomes are inferred first as they cover the entire domain boundary while the
uxiliary genomes overlapping the basic genomes’ corners are inferred at last because they are typically immersed

nside the domain without direct contact to the boundary. The basic genomes’ borders are initialized either with

8



H. Wang, R. Planas, A. Chandramowlishwaran et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114424

f

g
f

p
i
a
i

4

N
G
G
o
(
a

P
F
η

e
w
c

A

4

I
[
W

4

t
(
s
c

the domain’s BC if they lie on the domain’s boundary or with 0 if they lie between basic genomes . The predictions
in basic genomes provide the BCs for auxiliary genomes and then the predictions in auxiliary genomes update the
unknown BCs of the basic genomes. The iterations stop when the change in the inferred BCs of basic genomes is
smaller than the user-defined tolerance ϵ.

Fig. 3(c) illustrates the spatial distribution of basic and auxiliary genomes and the iterative nature of MF predictor
or solving the Laplace equation in Ω = [0, 2] × [0, 2] with genomes of size 1 × 1. In this figure, there are 4 basic

genomes (g1-g4) that, without any overlap, cover Ω . The BCs are only known on two sides of the basic genomes
and hence the MF predictor aims to predict the unknown BCs on the other two sides. There are also 5 auxiliary
genomes (g5-g9) that accelerate the pace of inferring the unknown BCs of the basic genomes. In one iteration, the
genomes are updated in the following order: g1-g4 → g5, g6 → g7, g8 → g9. (Within this order, non-overlapping

enomes can be updated concurrently, e.g., g1 through g4 or g5 and g6. We plan to exploit this parallelism in our
uture work.) In this example, MF predictor converges to the exact solution in 18 iterations.

In contrast to conventional numerical methods and PINN, MF predictor does not solve for all the grid/collocation
oints in the entire domain. Instead, it only infers the solution on the borders of basic and auxiliary genomes. For
nstance, for genome g7 in Fig. 3(c), MF predictor uses the pre-trained GFNet to predict the solution on its vertical
nd horizontal center lines. These predictions are then used for inferring the solutions in genomes g9 (in the current
teration) as well as g1 and g3 (in the next iteration).

. Results and discussions

We evaluate GFNet and MF predictor by solving the linear Laplace equation and the non-linear incompressible
S equations in Sections 4.1 and 4.2, respectively. In each section, we first present the details on data generation,
FNet architecture, accuracy, and performance (the latter refers to computational costs). Then, we compare
FNet and MF predictor against the state-of-the-art PINNs. In Section 4.3 we do an in-depth error analysis of
ur framework and test its accuracy when the Fourier neural operator (FNO) [31] and deep operator networks
DeepONet) [33] are used as GFNets and in Section 4.4 we demonstrate the advantage of enforcing the network
rchitecture to satisfy the applied BCs.

We use Tensorflow [72] and ADAM [73] optimizer. We implement GFNet with TensorFlow 2 (2.2.0) whereas the
INN related sources [25,74] used for comparison are built with TensorFlow 1 (1.8.0). In Section 4.3, we implement
NO with Pytorch 1.9.0 and DeepONet with Tensorflow 2 (2.4.0). For our models, we initialize the learning rate,
, by 5e-4 and reduce it by 20% when the validation loss decreases by less than 0.01% across 200 consecutive
pochs. We use a 9 : 1 ratio for splitting the data into training and validation samples and terminate the training
hen η = 1e-7. We measure accuracy via mean absolute error (MAE) and mean absolute residual (MAR) metrics

alculated as:

MAE:
Ng∑
i=1

|N (ggg, xxx i |θθθ ) − u(xxx i )|/Ng MAR:
Ng∑
i=1

|H (N (ggg, xxx i |θθθ )) |/Ng.

ll the simulations are done on an NVIDIA Quadro RTX 8000 GPU.

.1. Laplace equation

Laplace equation is an elliptic BVP that ubiquitously appears in fluid dynamics and heat transfer [2], see Eq. (1).
n this section, we learn the 2D Laplacian operator via a GFNet in a unit square domain, i.e., the genome covers
0, 1]× [0, 1]. Then, we use MF predictor to solve the Laplace equation in domains that are up to 1200 times larger.

e compare the accuracy and performance of GFNet and MF predictor against PINN [25] and XPINN [28].

.1.1. Training data
As described in Section 3.2, we use GPs to generate BCs. In particular, we use Sobol sequence [75] to sample

he hyperparameters of the infinitely differentiable Gaussian kernel of a 1D GP. Then, we draw a sample function
i.e., a 1D curve) from each GP and wrap it around the genome, see Fig. 3a. Finally, for each BC, we numerically
olve the Laplace equation via PyAMG [68] which relies on FD to provide the solution on a uniform grid that

onsists of 32 × 32 cells and 128 boundary points, see Fig. 4(a).
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Fig. 4. (Color Online) Distribution of training data in Ω : 128 boundary points, 400 data points, and 400 collocation points. The locations
f boundary and data points are fixed during training while those of the collocation points adaptively change based on |∇N |.

.1.2. Architecture and training of GFNet
As defined in Section 3.2, GFNet’s inputs include xxx and the discretized boundary value function ggg which in this

ase has Nbc = 128 points. Since Laplace equation has one scalar variable (i.e., Nvar = 1), GFNet has a total of
Nbc × Nvar + Ndim = 130 inputs. The output of GFNet is a single value N (ggg, xxx |θθθ ) that approximates u(xxx).

We choose tanh as the activation function and evaluate both FC and LPFC architectures introduced in Section 3.2.
he loss function of GFNet is defined in Eq. (2) and uses β = 0 and α =1e-3. When minimizing this loss, three data

ypes are used in each epoch: boundary points, data points, and collocation points. While the location of boundary
nd data points are determined by PyAMG (and hence fixed), we adaptively choose the location of collocation
oints during training based on the spatial gradients that GFNet estimates inside the genome. These gradients are
stimated via AD and their magnitude, |∇N |, controls the spatial distribution of the collocation points by increasing
he point density in regions where |∇N | is large. Fig. 4(b) demonstrates the spatial distribution of these three data
ypes in one randomly selected epoch during training. In this figure, boundary and data points are on a grid (since
yAGM generates them based on FD) while collocation points concentrate near the genome’s border where the
olution tends to change sharply.

.1.3. Accuracy for unseen BCs
We train the FC and LPFC architectures using 2000 samples where each sample consists of 128 boundary, 100

ata, and 400 collocation points. The FC architecture consists of 8 hidden layers of sizes 1282
⊗ 962

⊗ 642
⊗ 322

which make a cone as shown in Fig. 3(b). The notation ki
⊗l j denotes i FC layers of size k followed by j FC layers

of size l. We invert the order of these hidden layers for LPFC so that both architectures have the same number of
neurons. The resulting GFNets are tested on 400 unseen samples generated by PyAMG where the MAE and MAR
are evaluated at all the 32 × 32 grid cells.

The first two rows in Table 1 compare the accuracy of the two architectures. We observe that LPFC learns the
Laplacian operator more accurately than FC by one order of magnitude. This superior accuracy is because FC
applies a non-linear activation function (tanh) to ggg which conflicts with the linearity of the Laplace equation. On
the contrary, LPFC applies the non-linear activation function only to xxx and retains the linearity of the Laplacian
operator. Therefore, we use the LPFC architecture in the remainder of this section.

We further improve GFNet’s accuracy by increasing its depth and the size of training data. (To reduce training
costs, we do not use all the 32 × 32 points where PyAMG provides the solution.) In particular, we use 14 layers of
size 322

⊗ 642
⊗ 965

⊗ 1285 and 8000 samples to reduce the MAE and MAR of LPFC by 1.3 and 1.8 times,
respectively. Moreover, LPFC consistently outperforms FC in every case and exhibits 2 times higher accuracy
with 8000 samples. Further increasing the number of samples or hidden layers did not noticeably affect accuracy.
Therefore, we select LPFC architecture and use the 14-layer GFNet trained with 18 000 samples as the final model
in MF predictor. We also test single and double-precision computations but no significant difference in accuracy is
observed for either GFNet (see Table 1) or MF predictor (see Fig. 5). Since the former is 17% faster, we choose
the model trained with single-precision.
10
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Table 1
Accuracy of GFNet on learning the Laplacian operator: LPFC architecture learns the Laplacian operator more accurately
than FC. The training column includes the number of layers, samples, data/collocation points, and the mean absolute error
(MAE). The test column reports the MAE and the mean absolute residual (MAR) which are calculated by evaluating GFNet’s
predictions against PyAMG [68].

Network Precision Training Test on unseen BCs

Layers Samples Points MAE MAE MAR

FC Single 8 2000 100\400 1.33e−3 2.64e−3 1.72e−1
LPFC Single 8 2000 100\400 3.88e−4 5.42e−4 2.33e−2
FC Single 14 4000 400\400 5.57e−4 1.30e−3 7.12e−2
LPFC Single 14 4000 400\400 2.55e−4 4.33e−4 2.05e−2
FC Single 14 8000 400\400 4.06e−4 8.79e−3 4.17e−2
LPFC Single 14 8000 400\400 2.37e−4 4.10e−4 1.30e−2
FC Double 14 8000 400\400 3.86e−4 8.12e−4 3.84e−2
LPFC Double 14 8000 400\400 2.39e−4 4.07e−4 1.51e−2
LPFC Single 14 18000 400\400 1.59e−4 4.10e−4 1.46e−2
LPFC Double 14 18000 400\400 1.59e−4 4.10e−4 1.46e−2

4.1.4. Accuracy on unseen domains subject to unseen BCs
We first evaluate MF predictor on square domains of area A > 1 with two boundary functions g1(s) =

in(2πs/
√

A) and g2(s) = sin(2πs) where s parameterizes the boundary. We gradually increase A and execute
MF predictor in both single and double-precision. The accuracy of MF predictor is measured by the MAE between
the converged solution and the ground truth generated with PyAMG. Fig. 5 summarizes the results.

At A = 1, the error is solely due to GFNet (i.e., inferring the solution for an unseen BC). For both g1(s) and
g2(s), the MAE spikes at A = 2×2 as it starts to include additional error accumulated during the iterative process in

F predictor. However, as A increases, the influence of BC on the inner region of the domain reduces, and therefore
F predictor can more accurately predict the solution. As a result, MAE decays and plateaus once A > 4 × 4.
The converged MAEs for g1(s) and g2(s) are different. For g1(s), the boundary function oscillates less across

he domain boundary as A increases which simplifies the genome-wise BVP compared to A = 1. Therefore, at
A = 8 × 8, even with the additional accumulated error due to MF predictor, the MAE is less than that at A = 1.

owever, for g2(s) the oscillation frequency does not depend on A and hence the MAE at A = 8 × 8 exceeds that
t A = 1 and is also 4 times larger than the corresponding MAE for g1(s).

We also demonstrate the transferability and scalability of MF predictor by solving the Laplace equation in a
omain that resembles “Mosaic Flow” and is 1222.5× larger than the training domain (i.e., a genome), see Fig. 1.
he prescribed BC is g(xxx) = sin(2π (x/6 + y/5)) and 2020 genomes (basic and auxiliary) are used in MF predictor
hich converges in 9821 seconds with an MAE of 2.61e−3.
In this study, we only consider square genomes for GFNet. Accordingly, MF predictor can accurately assemble

FNet’s inference for domains spanned by genomes, i.e., with rectilinear boundaries. However, for non-rectilinear
omains such as the above calligraphy shape, we need to adopt a mosaic representation of the domain by
ecomposing the curved boundary to small squares, which results in the zigzag-shaped boundary in Fig. 1. We
ill investigate how to accurately consider non-square genomes in our future work.

.1.5. Comparison with PINN and XPINN
We compare the accuracy and computational costs of GFNet and MF predictor against a state-of-the-art PINN

hich has the feed-forward architecture of 60 ⊗ 60 ⊗ 60 ⊗ 60. To maximize the accuracy of this PINN, we train it
ith a two-stage optimization process [76] that starts with 40 000 iterations using ADAM [73] and is followed by a

econd-order optimization method based on L-BFGS [77]. We use 20000 × A collocation points and 32 × 4 ×
√

A
boundary points to consider the effect of A. Contrary to PINN, L-BFGS is not used in fine-tuning GFNet.

The evaluation results are illustrated in Fig. 5. PINN and GFNet achieve a similar accuracy for a single genome.
For the simpler BC, g1(s) = sin(2πx/

√
A), PINN achieves smaller MAEs compared to MF predictor for A > 1.

his higher accuracy is because (1) the parameters of PINN are fine-tuned with L-BFGS while GFNet is trained via
dam (GFNet cannot be trained via L-BFGS since it has too many parameters), and (2) PINN is specifically trained
n this BC (and cannot be used for any other BC) while MF predictor assembles the predictions from a GFNet that
11
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Fig. 5. (Color Online) Accuracy and performance of MF predictor and PINN for the Laplace equation with two different BCs: For
the boundary condition g1(s) = sin(2πs/

√
A), PINN achieves better accuracy than MF predictor. However, for the more complex BC

g2(s) = sin(2πs), the accuracy of PINN drops, especially in larger domains. Note that while PINN is re-trained for every new BC, MF
predictor has never seen these BCs. In terms of computational costs (sum of training and inference times), PINN is several orders of
magnitude slower than MF predictor (we were unable to train PINN on the 8 × 8 domain due to very high costs). In addition, MF predictor
with single (SP) and double-precision (DP) yields near identical results.

Table 2
XPINN vs. MF predictor: Both methods approximate the
Laplace operator in a square domain of size 4 × 4.

Method MAE

MF predictor 5.82e−4
XPINN 2.12e−2

has never seen this BC. For the more complex BC, g2(s) = sin(2πx), PINN fails to scale up to large A; indicating
hat its architecture is domain-specific and must be optimized anew. Unlike PINN, MF predictor scales up quite
obustly to large domains with unseen BCs without the need to re-train or fine-tune its GFNet. Remarkably, MF
redictor is between 1–3 orders-of-magnitude faster than PINN depending on the domain size, which underscores
ts potential for scalable inference, especially on large and complex domains (for instance, we were unable to train
PINN on an 8 × 8 domain due to the extremely high training costs).
Finally, we test MF predictor against XPINN [28] which is an extension of PINN that aims to address PINN’s

calability issues. XPINN divides a domain into some sub-domains and trains a PINN on each one while ensuring
ontinuity across the sub-domains. In our comparison, we choose a square domain of size 4 × 4 subject to the BC:

g1(s) = sin(2πx/
√

A) and divide it into 4 square sub-domains of equal sizes. The 4 PINNs used in XPINN have
an architecture of 20⊗20⊗20⊗20 and are trained using Adam for 5000 epochs with 16000 collocation points and
128 boundary points. Table 2 enumerates the accuracy of XPINN and MF predictor and shows that our approach
is two orders of magnitudes more accurate.

4.2. Navier–Stokes equations

The 2D steady incompressible NS equations are:

H1 : ∂x u + ∂yv = 0,

H2 : u∂x u + v∂yu + ∂x p/ρ − ν∇
2u = 0,

H3 : u∂xv + v∂yv + ∂y p/ρ − ν∇
2v = 0,

(7)

where u(xxx), v(xxx), and p(xxx) denote velocity components and pressure, respectively. We solve Eq. (7) in a lid-driven
cavity problem where the top lid moves with an arbitrary horizontal velocity, i.e., u = g(x), v = 0, and the remaining
boundaries are treated as static viscous walls where u = v = 0. We fix ρ = 1.0 and ν = 0.002 and aim to predict

x x x
u(xx), v(xx), and p(xx) in unseen domains that have unseen BCs on the top lid and are larger than a genome. Our

12
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imposed lid velocity profiles can be highly nonlinear functions and collectively generate Reynolds numbers in the
(0, 500) range. The corresponding flow fields are also more complex than cases where the top lid moves with a
uniform velocity.

The convergence theory in Section 3.1 does not strictly apply to the NS equations since the non-linear terms in
H2 and H3 do not conform to the formulation of the elliptic systems in Eq. (4). Nonetheless, the incompressible
NS equations can still be approximately viewed as elliptic because the information propagates in the same way
as it does in elliptic systems where any fluctuation at one point affects the entire domain. Several studies have
successfully employed Schwarz method with other numerical methods in solving the NS equations and present
accurate numerical results [78–81]. In the following sections, we will demonstrate that MF predictor with GFNet
can also learn the NS equations quite accurately and infer flow features that have not been seen in training.

4.2.1. Training data
We sample the velocity profile of the top lid using GPs and solve the NS equations with OpenFOAM [82] on

a uniform grid of 129 × 129 vertices. Then, for each solution field obtained via OpenFOAM, we sweep it with a
genome of size 0.5×0.5 and record the values on the boundary and inside the genome, see Fig. 3(a). This procedure
results in highly correlated training samples that adversely affect GFNet’s training. Hence, we (1) discard a sample
if the Euclidean distance of its BC to another sample’s BC, i.e., |gggi − ggg j |, is small, and (2) include cavities of size
1 × 2 and 2 × 1. Following this procedure, 2634 samples are generated.

4.2.2. Architecture and training of GFNet
For each sample, we uniformly extract 128 boundary points from the grid vertices located on the boundary.

GFNet’s inputs include the velocities (u, v) at boundary points and xxx , i.e., a total of Nvar ×Nbc+Ndim = 128×2+2 =

58 inputs. Following [76], we exclude the BC on p from the inputs and instead solve it as an internal variable.
he GFNet has three outputs N (ggg, xxx |θθθ ) = (û, v̂, p̂) which approximate the solution (u, v, p) at xxx . The loss function
f GFNet is adopted from Eq. (2) as follows:

L(θθθ ) =
1

N0

N0∑ (
γ1(û − u)2

+ γ2(v̂ − v)2
+ γ3( p̂ − p)2)

+
1

N1

N1∑ (
α1 H 2

1 + α2 H 2
2 + α3 H 2

3

)
+ β|θθθ |

2.

(8)

where the first summation minimizes the error on predictions, the second summation penalizes the residuals, and the
last term represents the Tikhonov regularization. γγγ = [γ1, γ2, γ3], ααα = [α1, α2, α3], and β balance the contributions
o the overall loss. When minimizing the PDE residuals, we cannot adapt the collocation points based on one
ariable’s spatial gradients in the same way we do for learning the Laplace equation (see Section 4.1.2). This is
ecause the point distribution based on one variable’s gradient may not align with the distributions based on the
ther two variables’ gradients. We could use the norm of the gradient vector but that will bias the training to favor
earning one variable better in expense of losing accuracy for the other variables. To avoid this issue, we increase
he number of collocation points by 3 times compared to solving the Laplace equations (1200 over 400, see Tables 1
nd 3) and randomly initialize their positions with a uniform spatial distribution. These collocation points are fixed
uring training. We use the FC architecture due to the non-linear nature of NS equations and select the layer sizes
s 2563

⊗ 1283
⊗ 963

⊗ 643
⊗ 322

⊗ 3. All except the last hidden layer use tanh as the activation function. The
epth and size of our GFNet are considerably larger than the networks in related works [25,74,76,83] because we
1) use BCs (which are high-dimensional) as inputs, and (2) find that a deep network with Tikhonov regularization
eneralizes better than shallow networks that exclude regularization. To find the optimal values of γγγ , ααα, and β, we
et γ1 = γ2 and α1 = α2 = α3 = α since u and v are equally important and the three equations are highly coupled,
.e., no reason to penalize one equation’s residual more than the others. We alter β between 1e-13 and 1e-9 and
or each value of β, test a few combinations of γ1, γ3 and α. The most accurate results obtained are presented in
able 3.

For data-only GFNet, i.e., α = 0, reducing pressure’s contribution to gradient descent improves the overall
ccuracy. We use γ3 = 0.5 since further decreasing it to γ3 = 0.2 negligibly improves the predictions for velocities
hile increasing the error on pressure by 27%. Next, we increase the number of samples and minimize PDE

esiduals in GFNet’s training. Using collocation points and α = 1e-3 reduces the accuracy by more than 50%
13
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Table 3
GFNet’s accuracy in learning the NS equations: The first and second values in column one indicate the number of data and collocation
points, respectively. γ1, γ3, α, and β are the coefficients in Eq. (8). The three validation error and loss values correspond to u(xxx), v(xxx), and
p(xxx) which denote the velocity components and pressure, respectively.

Points γ1, γ3 α β Validation MAE Validation PDE loss

961/- 1.0 1.0 0 1e−11 1.02e−03 1.01e−03 6.49e−04 – – –
961/- 1.0 0.5 0 1e−10 6.81e−04 6.43e−04 5.51e−04 – – –
961/- 1.0 0.2 0 1e−10 6.42e−04 6.30e−04 7.05e−04 – – –
576/1200 1.0 0.5 1e−3 0 1.48e−03 1.24e−03 8.79e−04 8.30e−04 2.58e−03 4.51e−04
576/1200 1.0 0.5 1e−2 1e−10 1.88e−03 1.56e−03 9.84e−04 3.20e−04 4.57e−04 1.94e−04

Fig. 6. (Color Online) Velocity magnitudes
√

u2 + v2 for flow in a square lid-driven cavity with unseen BC: (a) The ground truth is
imulated by OpenFOAM [82]. (b) MF predictor with 9 genomes fails to accurately predict the velocities. (c) MF predictor with 19 genomes
ccurately predicts the unseen conditions and achieves an MAEs of 5.68e−3 and 4.96e−3 for velocities (u, v), respectively. (d) PINN fails

to resolve the flow and achieves MAEs 1.52e−1 and 1.39e−1 for velocities (u, v). (e) In addition to the 9 genomes (g1−9) arranged as
hown in Fig. 3(c), we add 10 more auxiliary genomes (g10−19) to improve MF predictor’s accuracy in resolving the unseen flow.

nd further increasing α exacerbates the inaccuracies. The reasons that minimizing PDE residuals reduces accuracy
re twofold. Firstly, as pointed out in [74,84,85], training physics-informed models is equivalent to solving a stiff
ystem of ordinary differential equations which requires more advanced training techniques such as adaptive weight
r adaptive activation functions. Leveraging these techniques can potentially increase the accuracy of our GFNet
nd will be pursued in our future works. Secondly, Eq. (8) uses AD to compute the derivatives analytically and
egularizes the differential form of the NS equations while OpenFOAM solves the integral form of the NS equation.
ote that the velocity and pressure from OpenFOAM are accurate but their derivatives differ from the ones obtained
y analytical differentiation and dissatisfy the PDE residual in Eq. (8). For instance, OpenFOAM reports an average
esidual of 9e-10 for H1 using the velocities shown in Fig. 6(a). However, the same velocities result in an average
esidual of 3e-4 if FD is used to calculate the derivatives in Eq. (7). As a result, the data loss and PDE residual
ontradict each other during gradient descent and decrease the overall accuracy of GFNet.

For the lid-driven cavity problem, we are interested in inferring the velocity accurately across unseen BCs and
nseen domains. Therefore, we choose the model with the lowest MAE in velocity which is obtained with γ3 = 0.5
nd α = 0.

.2.3. Accuracy for unseen domains subject to unseen BCs and comparison with PINN
We evaluate the accuracy of MF predictor in a domain of size [0, 1] × [0, 1] which is four times larger than the
genome used in training the GFNet. The unseen BC is again generated via a GP and determines the velocity profile

14
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Fig. 7. (Color Online) Velocity magnitude
√

u2 + v2 and streamlines for the flow in a step-shaped lid-driven cavity: Compared to the ground
truth simulated by OpenFOAM [82], MF predictor achieves MAEs of 1.35e−2 and 1.24e−2 for velocity components u and v, respectively.
The streamline plots (colored by velocity magnitude) reveal that the step induces a complex flow pattern that consists of three inter-related
vortices and MF predictor successfully captures all these vortex structures while the GFNet has never seen such scenarios during training.

Fig. 8. Error decomposition: Our framework has two primary error sources. The genomic error is introduced in GFNet’s prediction for unseen
BCs while the assembly error is accumulated from the iterative procedure in MF predictor. The genomic error is divided into optimization
error, generalization error, and approximation error [86–88]. The optimization error is estimated by the training MAE. The generalization
error is measured by subtracting test MAE and training MAE. Given the large size of our neural networks, we assume the approximation
error is negligible. The assembly error is evaluated by subtracting GFNet’s test MAE from the final MAE achieved by MF predictor.

of the top lid. We first use MF predictor with 9 genomes (4 basic and 5 auxiliary) arranged as shown in Fig. 3(c)
which is also used throughout Section 4.1. However, as illustrated in Fig. 6(b), using only 9 genomes does not
provide sufficient accuracy and the MAE for velocity components u and v are 7.15e−2 and 6.82e−2, respectively.
This is due to the highly non-linear nature of the NS equations which complicates the propagation of the boundary
information. To address this issue, we include more auxiliary genomes (that overlap with the original 9 genomes) to
facilitate the information propagation, see Fig. 6(e). As shown in Fig. 6(c), using 19 genomes significantly improves
the accuracy and reduces the MAE of velocity components u and v to 5.68e−3 and 4.96e−3, respectively.

To compare accuracy and performance with the state-of-the-art, we construct the PINN designed in [74] to
olve the lid-driven cavity problem with u = 1, v = 0 on the top lid (we were able to reproduce the accurate results
eported in [74]). We re-train the model for 40 000 epochs with Adam using the architecture 50⊗50⊗50⊗50⊗50,
× 129 boundary points, and 10 000 collocation points. As shown in Fig. 6(d), PINN is unable to resolve the flow
eld and the MAE for velocities (u, v) are as large as 1.52e−1 and 1.39e−1. This indicates that the architecture
f PINN only applies to the specific BC used in [74], i.e., changing the BC requires not only re-training the PINN
15
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but also re-designing its architecture. Regarding computational costs, MF predictor with 19 genomes converges to
an accurate solution in 117 seconds while the PINN’s training takes 8846 seconds.

We further evaluate MF predictor by predicting the flow in a step-shaped lid-driven cavity that has an unseen
elocity profile set to the top lid, see Fig. 7. This unseen cavity is 12 times larger than our genomes and is
ecomposed into 12 basic and 21 auxiliary genomes. Fig. 7 compares the results from MF predictor and the ground
ruth simulated by OpenFOAM [82] using the same grid resolution as in data generation. MF predictor converges
n 313 seconds which is almost 3 times more than the cost for the square cavity in 6(d). This increase in inference
ime is consistent with the 3:1 area ratio between the two domains.

The MAE for velocities (u, v) are 1.35e−2 and 1.24e−2, respectively, which are larger than the MAE for the
quare cavity by 1 order of magnitude. As shown in Figs. 7(c) and 7(d), the increased error primarily comes from
omplex flow patterns that have never been seen by GFNet during its training: the flow over the step corner and
he large vortex interleaved with two neighboring vortices on its left and bottom. Nonetheless, MF predictor still
aptures all three vortex structures in the cavity as shown by the streamlines in Fig. 7(e). We also observe some
nphysical flows in the near-wall regions where the streamlines should be parallel with the wall. This error is
aused by the inaccuracies of GFNet in predicting the flow on the boundaries, which will be further discussed in
ections 4.3 and 4.4.

.3. Detailed error analysis and comparison with DeepONet and Fourier Neural Operator (FNO)

We attribute the error of our framework to two sources: the genomic error which is introduced by GFNet’s
inference for a single genome with an unseen BC, and the assembly error which is accumulated during the iterative
procedure in MF predictor. The genomic error can be further divided into three parts [86–88],

|N (ggg∗, xxx |θθθ ) − uuu∗(xxx)| = |N (ggg∗, xxx |θθθ ) − ûuu(xxx) + ûuu(xxx) − uuu∗(xxx)|
≤ |δδδ(ḡgg, xxx)| + |δδδ(ggg∗, xxx) − δδδ(ḡgg, xxx)| + |ûuu(xxx) − uuu∗(xxx)|,

(9)

here uuu∗(xxx) is the exact solution to a BVP with an unseen BC (ggg∗), ûuu(xxx) represents the closest approximation to
∗(xxx) that a given neural network can achieve, ḡgg is a training sample that resembles ĝgg, and δδδ(ggg, xxx) = N (ggg, xxx |θθθ )−ûuu(xxx)
easures the difference between ûuu(xxx) and the approximation achieved by training the neural network. In Eq. (9),

he first part represents the optimization error introduced during training [86,87] while the second part quantifies
he neural network’s generalization error [88] in predicting unseen inputs. The last part defines the approximation
rror [86,87] which appears when the target function uuu∗(xxx) is not covered by the neural network’s functional
pace. According to the universal approximation theorem [89,90], the approximation error effectively diminishes
y increasing the size of the neural network.

In practice, it is hard to compute the above errors rigorously since ûuu(xxx) is typically unknown. Nonetheless, we can
efine approximate metrics to reflect the error’s magnitudes, see Fig. 8. Given the large size of our neural networks
hich have up to 3×106 parameters, we assume that the approximation error is small compared to the optimization

nd generalization errors which are estimated by, respectively, GFNet’s training MAE and the subtraction of training
AE from test MAE. We compute the test MAE of GFNet by (1) decomposing an unseen domain into basic

enomes, (2) extracting the basic genomes’ BCs directly from the ground truth, and (3) inferring the solution in
ll the basic genomes using the extracted BCs, and (4) evaluating the MAE against the ground truth across all the
enomes. Note that this test MAE is evaluated without using MF predictor and it solely reveals the genomic error
n predicting flows with unseen BCs. At last, we approximate the assembly error by subtracting the GFNet’s test

AE from the final MAE achieved by MF predictor.
In what follows we present a detailed error analysis of our framework in solving the Laplace and the NS equations

ith unseen domains and BCs. We note that the transferability feature of framework is independent of the specific
rchitecture used in GFNet. That is, other state-of-the-art DNN architectures such as DeepONet [33] and the Fourier
eural operator (FNO) [31] can also be used to learn the underlying PDE system in the genomic domain and, in
urn, used in MF predictor. With this important note in mind, in this section we compare our GFNet’s performance
gainst DeepONet and FNO at the genomic as well as large scales to obtain a deeper understanding of the error

ources.
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Table 4
Accuracy of different operator learners: The residual is computed with both FD (with a step of 1/256) and AD. AD-based
residual cannot be calculated for FNO due to its architecture and training are set up. Only LPFC best uses collocation points
in its training.

Operator learner Train MAE Validation MAE Residual with FD Residual with AD

DeepONet 2.19e−04 2.34e−04 5.61e+2 2.81e+1
FNO 6.95e−05 7.58e−05 8.48e+2 –
LPFC 1.67e−04 1.66e−04 1.85e+4 5.27e+3
LPFC Best 1.59e−4 4.10e−4 4.03e−3 1.46e−2

Table 5
Effect of GFNet on the errors: The errors are defined in Section 4.3 (see also Fig. 8) and calculated for the
“Mosaic Flow” logo in Fig. 1.

GFNet model Optimization error Generalization error Assembly error Final MAE

DeepONet 2.19e−04 6.87e−04 1.97e−03 2.87e−03
FNO 6.95e−05 5.81e−04 4.74e−03 5.39e−03
LPFC 1.67e−04 4.80e−04 1.98e−03 2.79e−03
LPFC Best 1.59e−4 8.04e−04 1.80e−03 2.61e−03

4.3.1. Laplace equation
We train and compare LPFC against DeepONet and FNO where in both cases we test different architectures and

ptimization hyper-parameters and select the optimum one. The optimized DeepONet is an unstacked DeepONet
ith a branch network consisting of 6 fully connected hidden layers of sizes 1006 and a trunk network consisting

of 6 fully connected hidden layers of sizes 1006, all using swish activation functions (see [33] for more details on
the architecture). The optimized FNO has an architecture with width 64 and 18 modes (see [91] for more details).
The training procedure used in these two operator learners includes a total of 10 000 Laplace solutions from which
8000 are used in training while 2000 employed in validation. For each sample, we include 900 data points (placed
on a regular grid), 124 boundary condition points, and no collocation points. The reason that collocation points are
not used in training any of the models compared in this subsection is that FNO cannot be trained using AD because
it predicts on a pre-selected grid which is fixed during training. Hence, the output of FNO is not single-valued and
the AD-based residual of a single point is not properly defined. Thus, for fair comparison, we retrain the LPFC
architecture with the same setup explained above. The accuracy of these three models are also evaluated against
the best LPFC architecture of Section 4.1.4 (which uses AD-based residuals in training) to investigate the effect of
collocation points on the performance.

The training results are summarized in Table 4 and indicate that in this experiment FNO achieve the best MAE
results in both training and validation. We note that while our best LPFC architecture presents the worst validation
error, it outperforms the other models in terms of the PDE residual. This result is a direct consequence of training
it with collocation points but less labeled data points. Additionally, we attribute the better performance of LPFC
over DeepONet to two different reasons: (1) LPFC can be considered as a simplified version of DeepONet and
therefore is easier to train, and (2) LPFC preserves the linearity of the boundary conditions which is a key feature
of the Laplace equation.

Next, we evaluate the performance of these models when used in MF predictor . We perform this test on our
largest domain that represents the spelling of “Mosaic Flow”, see Fig. 1. The results are summarized in Table 5
and indicate interesting features about the error sources. We observe that the training and validation errors shown
in Table 4 slightly correlate with the generalization error, i.e., the model with lower training/validation error has
smaller generalization error compared to other models. However, this trend is not observed in the assembly error,
i.e., a lower generalization error does not result in a smaller assembly error. A closer look at Tables 4 and 5
indicates that the best assembly error is obtained for the model that achieves smallest residual error, i.e., the LPFC
architecture which employs collocation points in its training. In fact, the largest assembly error is obtained by the
FNO architecture whose FD-based residual diverges as the FD step size decreases. From these observations we
conclude that when MF predictor is used in large domains the PDE residuals at the genome scale greatly contribute
to the final MAE and hence the trained GFNet must achieve not only a small MAE in training/validation, but also
a small PDE residual.
17
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Table 6
Accuracy of different GFNets for learning the NS equations: We compare four different GFNet implementations that include

the fully connected (FC) network, DeepONet, fourier neural operator (FNO), and FC with the enforcement of the input BC
(FC+ BC). The generalization and assembly error are evaluated on the step-shaped cavity. Each error includes two entries
for the two velocity components which are u and v, respectively. DeepONet and FNO achieve lower optimization errors
but comparable/worse generalization and assembly errors. Enforcing the exact BC not only improves GFNet’s training and
generalization errors but also reduces the assembly error in MF predictor.

GFNet model Optimization error Generalization error Assembly error Final MAE

u v u v u v u v

DeepONet 6.26e−4 5.20e−4 1.86e−3 2.00e−3 6.30e−2 6.98e−2 6.48e−2 7.19e−2
FNO 4.01e−4 3.87e−4 2.39e−3 1.76e−3 5.02e−2 2.74e−2 5.30e−2 3.31e−2
FC 6.74e−4 6.54e−4 1.87e−3 1.65e−3 1.10e−2 1.02e−2 1.35e−2 1.24e−2
FC+ BC 4.16e−4 3.55e−4 1.15e−3 1.20e−3 6.51e−3 8.44e−3 8.07e−3 1.00e−2

Table 7
Residual comparison of different models for learning the NS equations: We compare the PDE residuals of three GFNets

where FC outperforms the other models by 1–2 orders of magnitudes. The calculations are performed on validation data from
the training.

GFNet model Residual with FD Residual with AD

H1 H2 H3 H1 H2 H3

DeepONet 4.19e−02 6.65e+00 9.24e−02 1.79e−02 9.79e−02 2.29e−03
FNO 3.34e−01 5.73e−01 3.72e−01 – – –
FC 2.30e−03 5.96e−03 4.27e−04 7.62e−04 2.96e−04 1.37e−04
FC+BC 4.972e−01 1.179e−01 9.335e−03 1.049e−01 1.960e−03 2.820e−03

4.3.2. Navier–Stokes
We repeat the analyses of previous section for the NS equations. In particular, we build two GFNets using the

eepONet and FNO architectures using the training data introduced in Section 4.2.2 (2634 samples with 961 data
oints per sample and no collocation points). We test all GFNets within MF predictor to estimate the flow in the
tep-shaped cavity.

Rows one through three in Table 6 enumerate the breakdown of errors where FNO achieves the lowest
ptimization error while FC slightly outperforms the other two models in terms of the generalization error. Compared
o the results in Table 5, the ratio between generalization and optimization errors has increased because (1) compared
o the Laplace equation, the NS equations are much more complex and have higher dimensionality, and (2) the test
amples used for calculating the generalization error are extracted from the step-shaped cavity which not only
as unseen BCs but also contains very complex unseen flow features, i.e., the flow over the sharp corner and the
nterleaved vortex structure (see Fig. 7(d)). These features adversely affect the performance of all models in this
xperiment.

In terms of the assembly and final errors, the GFNet based on FC accumulates the least error. This observation
ligns with the results reported in the previous section for the Laplace equation: FC achieves smaller residuals
ompared to DeepONet and FNO (see Table 7) and hence it provides smaller assembly error. While this observation
otivates the use of collocation points in training a GFNet, for the reasons argued in Section 4.2.2, we do not use

esiduals in approximating the solution of the NS equations. We will research effective ways to incorporate PDE
esiduals in learning the NS equations in our future work.

.3.3. Assembly error and genome density
In the previous section we showed that the final MAE of the MF predictor depends on the generalization and

ssembly errors where the latter error source is directly affected by the PDE residuals of the GFNet. In Section 4.2.3,
e demonstrated that the genome density also affects the assembly error where using more auxiliary genomes

mproved the predicted flow in the single cavity domain, see Fig. 6. Following this observation, we examine the
ffect of genome density on the assembly error in this section.

To consistently evaluate assembly error against genome density, we evaluate the effect of placing extra layers of
uxiliary genomes that overlap with the borders of the previously added auxiliary layers. Following the descriptions
18
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(

Fig. 9. (Color Online) MF predictor accuracy vs. genome density for the single cavity domain: The accuracy of MF predictor is evaluated
under different arrangements and numbers of auxiliary genomes. Here, green indicates that only a single layer of auxiliary genomes is used.
These genomes are placed over the borders of the basic genomes and can be centered on the vertical borders (e.g., genomes 5 and 6 in
Fig. 3(c)), horizontal borders (e.g., genomes 7 and 8 in Fig. 3(c)), corner of 4 genomes (e.g., genome 9 in Fig. 3(c)), or at any combination
of these three configurations. The color blue shows that an extra layer of overlapping auxiliary genomes is placed at the vertical, horizontal,
or central borders of the existing auxiliary genomes (e.g., Fig. 6(e)). The colors red and orange indicate, respectively, that two and three
extra layers of overlapping auxiliary genomes are used.

in Section 3.3, we divide each layer of these auxiliary genomes into three different categories based on the borders
of the existing auxiliary genomes: we distinguish between genomes that overlap with (i) the vertical borders
e.g., genomes 5 and 6 in Fig. 3(c) or genomes 10, 11, 12 and 13 in Fig. 6(e)), (i i) the horizontal borders

(e.g., genomes 7 and 8 in Fig. 3(c) or genomes 14, 15, 16 and 17 in Fig. 6(e)), and (i i i) the corners where 4
basic genomes reside (e.g., genome 9 in Fig. 3(c) or genomes 18 and 19 in Fig. 6(e)). As different combinations
of these additional layers leads to different overall genome arrangements (which, in turn affects the iterative update
procedure), we add each of these layers in several steps: adding only central overlapping genomes, adding only
vertical or only horizontal genomes, adding both vertical and horizontal, and adding all genomes (i.e., vertical,
horizontal and central) at once.

We conduct this experiment on the single cavity domain for the NS equation using an FC architecture as a
GFNet. The results are summarized in Fig. 9 and demonstrate two interesting trends. (1) There is a local minimum
in the MAE which appears as a result of balancing propagated errors and boundary information. That is, as we
increase the number of genomes the both the BCs and errors propagate to the interior of the domain and after the
local minimum the propagated errors dominate the transferred information. (2) The extra horizontal overlapping
genomes improve the accuracy of MF predictor for the single cavity domain more than the other genomes. We
attribute this observation to the fact that the flow is predominately affected by the applied lid-velocity at the top of
the domain which means that the information is mostly propagated downwards.

Locating the abovementioned optimum has two primary challenges. First, the optimum configuration is problem
dependent. For instance, adding extra layers for the step-shape cavity domain would add extra assembly errors
and increase final MAEs regardless of the employed arrangement. Second, computational costs increase as more
genomes are employed in MF Predictor. In our experiments, we have observed that the simple arrangement described
in Section 3.3 consistently outperforms other arrangements (either simpler or more complex) and therefore we
recommend it as the default technique. In our future work we will research automatic and adaptive techniques to
arrange the basic and auxiliary genomes.

4.4. Enforcing exact boundary conditions in GFNet

For the step-shaped cavity, GFNet yields inaccurate predictions near the walls where the streamline should be
parallel with the boundaries, see Figs. 7(d) and 7(e). This is because GFNet applies the BCs by penalizing the MSE
at the boundary points (see Fig. 4), i.e., the input BCs are not strictly enforced. The BC for stationary walls is

u = v = 0 where even very small errors greatly affect the velocity direction and cause unphysical streamlines. To
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reduce this error, which will improve the accuracy of both GFNet and MF predictor, we design the architecture of
GFNet to strictly reproduce the input BCs.

To design a GFNet that reproduces a BC exactly, we follow [92] and decompose the approximated solution into
hree parts:

u(xxx) = G(xxx) + φ(xxx) · N (xxx |θθθ ), (10)

here G(xxx) is a smooth function defined on Ω that satisfies the BC, i.e., G(xxx) = g(xxx), xxx ∈ ∂Ω , φ(xxx) is a smooth
unction that is equal to zero on ∂Ω , and N (xxx |θθθ ) denotes the neural network which can be implemented with any
f the models explored in Section 4.3. G(xxx) can be constructed by either extrapolating g(xxx) from ∂Ω to Ω [93]
r training a neural network that interpolates the boundary points [92]. To avoid masking the network, φ(xxx) is

recommended to be nonzero inside Ω . The typical choice of φ(xxx) is the signed distance function that measures the
distance from xxx ∈ Ω to ∂Ω [92–94].

Note that Eq. (10) only solves the PDE with a specific BC on one domain. We make the following adjustments
to enforce the input BC in GFNet and retain its transferability across unseen BCs. First, our model takes both ggg
and xxx as inputs. We follow [93] to extrapolate ggg by weighted averaging,

G(ggg, xxx) =

Nbc∑
i=1

|xxx − xxxbc
i |

−2gggi∑Nbc
j=1 |xxx − xxxbc

j |−2
, (11)

where |xxx − xxxbc
i | represents the distance between xxx ∈ Ω and the i th boundary point and gggi = g(xxxbc

i ). In practice,
we add a small constant ϵ = 10−10 to the distance to avoid division by zero. Second, given that GFNet only infers
flows in square genomes, we simply choose φ(xxx) = x(l − x)y(l − y) where l is the square genome’s edge length.
Finally, we apply the neural network defined in Section 3.2, N (ggg, xxx |θθθ ), to Eq. (10) to achieve transferability across
unseen BCs.

We now approximate the solution of the NS equations with a FC-based GFNet that enforces the input BC as
described above. We denote this GFNet as FC+ BC and use the training data and the hyperparameters’ tuning
strategies explained in Section 4.2. In our tests, the architecture 4006

⊗ 3 delivers the best accuracy, improving
FNet’s training MAE of u and v by 62% and 84%, respectively, see Table 6. It also shows that FC+BC not only
ecreases the optimization and generalization errors but also reduces the assembly error by an order of magnitude.
o explain this improvement, we revisit the example in Fig. 2(c) where the two genomes Ω1 and Ω2 share the BC
t border ∂Ω1 ∩∂Ω2. For FC-based GFNet, its predictions (u1 and u2 in Fig. 2(c)) based on BCs from ∂Ω1 and ∂Ω2
an differ at the shared border. This discrepancy results in a discontinuous solution per iteration and contributes to
he assembly error accumulated in MF predictor. Enforcing the input BC in GFNet eliminates the discrepancy at the
hared border and therefore drastically reduces the assembly error. Similar to the FC-based GFNet, the assembly
rror of MF predictor with FC+ BC mainly comes from the unseen flow features. Nonetheless, imposing the exact
C drastically reduces the unphysical errors in streamlines, which become parallel with the boundaries in most of

he near-wall regions, see Fig. 10(c).
For elliptic PDEs with non-Dirichlet BCs, we note that FC+ BC can be easily extended to enforce Neu-

ann/Robin BCs and when used in MF predictor the assembled inference converges to the PDE’s exact solution.
e refer the readers to Appendix B and [93] for more details.

. Conclusions

We demonstrated that a well-designed and well-trained deep neural network that takes BCs as inputs (GFNet),
oupled with a novel iterative algorithm for assembling its predictions (MF predictor) can result in a transferable
eep learning framework for operator learning. To the best of our knowledge, such a framework is the first of its
ind. The main advantage of this framework is that the model, GFNet, needs to be trained only once and can then
e used forever without re-training to solve boundary value problems in larger and complex domains with unseen
izes, shapes, and BCs.

Our framework demonstrates the capability to infer the solution of Laplace and Navier–Stokes equations on
omains that are 1200× and 12× larger that the training domains, respectively. Such scalable predictions are
chieved without any re-training. Compared with the state-of-the-art PINN for both PDEs, we demonstrate a

emarkable 1-3 orders of magnitude speedups while achieving comparable or better accuracy across a range of
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e

Fig. 10. (Color Online) Velocity magnitude

√
u2 + v2 and streamlines for the step-shaped lid-driven cavity using the GFNet with exact BC

nforced. Compared to the GFNet using FC, enforcing the exact BC improves MAEs to 8.07e−3 and 1.00e−2 for velocity components
u and v, respectively. The error plot shows that the errors still primarily from the sharp corner and the interleaved vortex structures. The
streamline plot reveals that enforcing the exact BC significantly diminishes the unphysical errors in the near-wall regions, as the streamlines
are largely parallel with the boundaries.

BCs and domains unseen during training. Moreover, we present an in-depth error analysis of our framework, based
on which we compare our GFNet with DeepONet and FNO and demonstrate that our model can effectively reduce
the assembly error accumulated in MF predictor. At last but not least, we improve GFNet to exactly reproduce
the input BC, which further reduces all types of errors by up to 84%. We anticipate this research will open new
directions for physics-informed surrogate modeling in computational sciences and engineering.

More work remains to be done for GFNet to be widely used for a larger class of problems in engineering. For
instance, our studies employed square genomes which cannot accurately represent curved objects such as airfoils.
In addition, we only considered steady flows and boundary value problems whose right-hand-side function can be
either zero or a periodic function whose period in each direction equals the size of the genome. The latter choice
implies that the BVP solution on one genome is invariant to the genome’s position in a large domain which is
not a valid assumption for PDEs with space-dependent forcing terms. Moreover, the training of GFNet in this
paper is a compromise between accuracy and limited time and GPU resources we can access. We observed a 20%
improvement in the accuracy of GFNet for the Laplace equation when we trained the model using all the 32 × 32
data points. However, this will dramatically increase the training cost and prohibit us from fine-tuning the model
with 18 000 samples in a reasonable amount of time. To further improve MF predictor’s flexibility and successfully
apply our approach to complex geometries and unsteady processes, we can embed boundary coordinates, time, and
initial conditions as inputs. However, such a large input layer will require a GFNet with too many parameters which
will increase the training complexities and costs. To consider general non-homogeneous PDEs we anticipate using
multiple GFNets to learn the effect of forcing terms on the solution. Addressing these challenges and leveraging
distributed training/inference is an important future exploration.
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Appendix A. Non-smooth boundary conditions

In Section 4.3 we elaborated on the different error sources in our framework faces where the two most dominant
nes were the generalization and the assembly errors. In those analyses we employed smooth and differentiable BCs
ince all our models were trained with such BCs. In this section we quantify the generalization error for non-smooth
Cs. We evaluate the accuracy of the models described in Section 4.3 by solving BVPs for the Laplace equation

ubject to non-smooth BCs. We restrict this evaluation to domains of area 1 to prevent any bias that might arise
y the smoothing effect of the Laplacian. We consider 100 non-smooth BCs which are generated with a GP whose
ernel is a power exponential with randomly chosen power in the range [1, 2). Five sample BCs are demonstrated

in Fig. A.11.
The results are summarized in Table A.8 and indicate that the accuracy of all models has reduced compared to

Table 4. This accuracy reduction is due to the fact that all models have only seen smooth BCs during training. In
Table A.8 the FNO model has the best generalization error and it is followed by the LPFC and DeepONet models.
We believe this trend is because FNO predicts the solution for the entire genome at once (rather than a particular
spatial location in the genome) which makes it less sensitive to sharp changes in the BCs. In the case of residuals,
the LPFC model trained with the PDE loss outperforms the other operator learners. A better performance in these
cases can be achieved by models that enforce BCs which we have studied for the NS equation in Section 4.4.

Appendix B. Neumann and Robin boundary condition

In this paper we only present tests where the Laplace and NS equations are subject to Dirichlet BCs. Nonetheless,
our framework can also predict PDE solutions with Neumann and Robin BCs for the following two reasons. First,
the Schwarz method that our framework is based on can solve elliptic BVPs with Dirichlet, Neumann, and Robin
BCs [69–71].

Second, in our framework we replace the numerical method used in the Schwarz method to solve genome-wise
BVPs with GFNet. The GFNet that enforces the input BC (Eq. (10)) can be extended to solve PDE with Neumann
and Robin BCs [93]. To strictly reproduce the Robin BC, we can follow [93] and decompose the approximated

Fig. A.11. (Color Online) Sample non-smooth boundary conditions: To quantify the accuracy of the operator learners trained in Section 4.3,
a test dataset with 100 non-smooth BCs is created where the AMG solver is used to solve the Laplace equation.

Table A.8
Accuracy of different GFNets for non-smooth BCs: 100 random non-smooth BCs are created to
evaluate LPFC, LPFC best, FNO, and DeepONet models. We report the test MAE and the residual
computed with either FD with a step size of 1/32 or AD (training MAE and the validation MAE
based on smooth BCs are provided in Table 4).

Operator learner Test MAE Residual with FD Residual with AD

DeepONet 4.07e−2 8.38e+1 8.58e+1
FNO 7.57e−03 1.78e+1 –
LPFC 1.90e−02 4.88e+1 5.47e+1
LPFC Best 1.88e−02 1.70e−2 5.4e−3
22
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solution as:

u(xxx) = [1 + φ(c + nnn · ∇)] N (xxx |θθθ ) − φg (B.1)

here φ(xxx) is the signed distance function measuring the distance between xxx ∈ Ω to ∂Ω , the underlying Robin
C is nnn · ∇u + cu = g at ∂Ω , and nnn = −∇φ is outward unit normal vector. When c = 0, the Robin BC
egrades to Neumann BC. We note that Eq. (B.1) simplifies the original formulation in [93] by omitting the second
pproximation function (see Equation 25 in [93]). We prove that Eq. (B.1) satisfies the Robin BC as follows,

nnn · ∇u + cu
⏐⏐⏐
∂Ω

= nnn · ∇N + cNnnn · ∇φ + (nnn · ∇φ)nnn · ∇N − g nnn · ∇φ + cN

= nnn · ∇N − cN − nnn · ∇N + g + cN = g.
(B.2)

n the above, the first line is based on φ = 0 at ∂Ω and the second line is derived with nnn ·∇φ = −nnn ·nnn = −1. Despite
q. (B.1)’s complex form, it can be trivially implemented with a neural network. We refer the readers to [93] for

he details on constructing φ(xxx).
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