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Data-Driven Calibration of
Multifidelity Multiscale Fracture
Models Via Latent Map Gaussian
Process
Fracture modeling of metallic alloys with microscopic pores relies on multiscale damage
simulations which typically ignore the manufacturing-induced spatial variabilities in poros-
ity. This simplification is made because of the prohibitive computational expenses of explic-
itly modeling spatially varying microstructures in a macroscopic part. To address this
challenge and open the doors for the fracture-aware design of multiscale materials, we
propose a data-driven framework that integrates a mechanistic reduced-order model
(ROM) with a calibration scheme based on random processes. Our ROM drastically accel-
erates direct numerical simulations (DNS) by using a stabilized damage algorithm and sys-
tematically reducing the degrees of freedom via clustering. Since clustering affects local
strain fields and hence the fracture response, we calibrate the ROM by constructing a multi-
fidelity random process based on latent map Gaussian processes (LMGPs). In particular,
we use LMGPs to calibrate the damage parameters of an ROM as a function of microstruc-
ture and clustering (i.e., fidelity) level such that the ROM faithfully surrogates DNS. We
demonstrate the application of our framework in predicting the damage behavior of a multi-
scale metallic component with spatially varying porosity. Our results indicate that micro-
structural porosity can significantly affect the performance of macro-components and
hence must be considered in the design process. [DOI: 10.1115/1.4055951]
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1 Introduction
Multiscale models are increasingly employed to quantify the

effects of manufacturing-induced microscopic defects on the perfor-
mance of macroscopic components. In such models, a microstruc-
ture or a representative volume element (RVE) is associated with
each integration point (IP) of the discretized macrostructure. Tradi-
tional multiscale simulations use the finite element method (FEM)
to solve the nonlinear equilibrium equations at both scales where
macroscopic deformation gradients FM and RVE effective stress
σMFEM are exchanged between the two scales at each iteration, see
Fig. 1(a). A major challenge associated with such nested simula-
tions is the computational expenses which prohibitively increase
in the presence of nonlinear microscale deformations that involve
damage. Reducing these costs holds the key to understanding the
relation between microscopic defects and components’ fracture
behavior and, in turn, guiding the “design for fracture” process.
To this end, we propose a data-driven framework that has two
major components: (1) a mechanistic reduced-order model
(ROM) with an adjustable degree of fidelity and (2) a multifidelity
modeling and calibration scheme based on latent map Gaussian pro-
cesses (LMGPs) [1,2]. Integration of these two components enables
us to build calibrated multifidelity ROMs that can simulate the
damage behavior of multiscale materials with spatially varying
microstructures.
The rest of our paper is organized as follows. In Sec. 2, we review

existing works on reduced-order modeling and discuss the research

gaps that we aim to address. The overview and technical details of
our approach are provided in Secs. 3 and 4, respectively. We eval-
uate the performance of our approach in Sec. 5 and conclude the
paper in Sec. 6.

2 Background on Reduced-Order Modeling
Mechanistic ROMs are increasingly employed to accelerate non-

linear materials modeling by using a combination of methods from
linear algebra and machine learning that result in reducing the
number of unknown variables that characterize, e.g., microstruc-
tural strain and stress fields. Transformation field analysis (TFA)
and its successor nonuniform transformation field analysis
(NTFA) are two of the earliest ROMs [3–5]. These two methods
approximate plastic strain as either piecewise constants or spatially
varying orthonormal eigenstrains which are preselected in an offline
stage. These eigenstrains evolve in the online stage based on prede-
fined analytical functions that involve thermodynamic forces and
potentials.
Clustering-based ROMs are recent techniques that decompose

microstructure domains into a set of clusters whose interactions
and deformations are modeled. For instance, the self-consistent
analysis (SCA) [6] lumps material points with similar elastic
responses and then quantifies cluster-to-cluster interactions by the
incremental Lippmann–Schwinger equation. Finite element-based
cluster analysis [7] approximates the microstructural effective
responses by following the cluster minimum complementary
energy principle. Deflated clustering analysis (DCA) [8] agglomer-
ates close-by material integration points (IPs) into clusters and the
cluster-wise quantities of interests are computed in a multigrid
fashion where unknown variables are projected back and forth
between different meshes. In this work, we use cluster-based
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ROMs as they provide higher efficiency and versatility compared to
other methods such as TFA.
Successful application of any ROM depends on two primary

factors: (i) the coarsening degree (e.g., the chosen number of clus-
ters) which makes a tradeoff between fidelity level and computa-
tional costs and (ii) the calibrated material properties. Both of
these factors depend on the microstructure as well as the properties
of interests. For example, accurate prediction of the damage beha-
vior requires different damage parameters and a number of clusters
for the two microstructures in Fig. 1(a). In particular, given a
desired level of accuracy with respect to high-fidelity direct numer-
ical simulations (DNS), the analysis of the more complex micro-
structure in Fig. 1(b) generally requires more clusters (i.e., less
coarsening or data reduction).
Regarding the second requirement of the successful application

of ROMs, we note that accurate prediction of damage behavior
necessitates the calibration of material properties to account for
the diffusive stress and strain fields of any ROM. The diffusion typ-
ically depends on the microstructure topology, and it unrealistically
increases the tolerance of the material system to localized phenom-
ena. The superficial increase of material strength upon clustering,
therefore, must be counteracted in ROM to ensure solution accu-
racy. We clarify that, in this paper, we use the word “diffusion”
to exclusively refer to the artificially strengthening of material clus-
ters in ROMs (which aim to capture the homogenized behavior of
the material encompassed in the cluster) and not the transfer of
matter by diffusion.
While calibrating material properties plays a vital role in ensuring

that ROMs can be reliably used in multiscale simulations, there is
still a lack of systematic approaches that dispense with manual cal-
ibration which is time-consuming and suboptimal. As explained in
the next sections, our contribution is to develop a data-driven frame-
work to automate the calibration process of ROMs with any fidelity
level as a function of material morphology.

3 Overview of the Proposed Framework
Our framework relies on two primary components for damage

modeling in multiscale metals with porosity: a novel cluster-
based ROM and LMGP-based calibration which are detailed in

Secs. 4.3 and 4.4, respectively. We provide an overall description
of these components in this section.
The ROM surrogates DNS and estimates the stress field in a

microstructure under arbitrary displacement boundary conditions
that may result in plasticity and damage. The fidelity of the ROM
is determined by the user-defined parameter k which indicates the
number of clusters and balances costs and accuracy.
As argued in Sec. 2, the material properties that must be used in

ROM should be different than the true values that are used in DNS,
i.e., the ROM requires calibration. This difference depends on both
the microstructure complexity and, more importantly, k. Hence, we
use a data-driven approach that relies on emulation via an LMGP to
calibrate the material properties for ROMs. In particular, we use the
trained LMGP emulates ROM and DNS to answer the following
question:
Given k and one microstructure, what damage parameters

should be used in the ROM such that it predicts the same fracture
response as DNS which uses the true damage parameters?
We answer the above question by solving an inverse optimization

problem whose objective function relies on LMGP, see Fig. 1(c). To
make the optimization problem tractable, we make two mild
assumptions. First, we consider a small set of integer values for k,
i.e., we assume k= 800, 1600, or 3200 but more values can be
used within our framework. As shown in Sec. 4.3, all these
values are much smaller than the number of elements in a typical
mesh used in DNS and hence result in massive data reduction or
coarsening. Second, the very high dimensional morphology of
microstructures can be represented with a reduced set of quantita-
tive descriptors that in our case characterize the geometry and
spatial distribution of the pores.
We note that clustering-based ROMs are new methods developed

in recent years. Even though ROMs dramatically improve simula-
tion efficiency, the number of clusters in ROMs is currently
chosen in an ad-hoc manner and there still lacks theoretical proof
on the criteria to choose the number of clusters for arbitrary material
systems. This is because material systems can be very different in
local morphology, material composition/property, defect types/dis-
tributions, etc. More complex material systems generally require
higher fidelity models and therefore more clusters. The goal of
our work is to replace this manual approach for selecting the
number of clusters with an automated method. In this work, we

Fig. 1 Proposed data-driven framework for multiscale damage modeling: LMGP creates a multifidelity emulator for the ROMs
and DNS. It is then used in an inverse optimization to determine the damage parameters that must be used in ROMs such that
they approximate DNS as closely as possible conditioned on the microstructure. Upon this calibration, a multiscale simulation
is run where ROMs are used at the microscale: (a) concurrent multiscale damage model (FE2), (b) computational analyses via
ROM, (c) data-driven calibration via LMGP, and (d ) data-calibrated ROM.
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start with 800 clusters and then doubled this number twice to get
1600 and 3200 clusters. We intentionally did not study lower/
higher clusters because we aim to develop a rather general calibra-
tion scheme that is not sensitive to the chosen cluster numbers.
To build the LMGP, we generate the training samples by the

design of experiments (DoE) where the inputs are microstructural
descriptors and calibration parameters that control the damage beha-
vior. For sample i, we first use a reconstruction algorithm to build
the microstructure corresponding to the ith set of descriptors.
Then, we calculate the fracture response of the ith microstructure
via a simulator (i.e., DNS or one of the ROMs) while using the
ith set of damage parameters. When obtaining the responses, we
select the simulator based on its computational costs, i.e., the fre-
quency of using a simulator is inversely proportional to its costs
(e.g., we employ an ROM with small k much more than DNS or
an ROM with large k).
It is noted that the optimization problem uses LMGP rather than a

traditional Gaussian process (GP) since we view the data source
indicator as a categorical input rather than a quantitative one, see
Fig. 1(c). This choice is justified since alternating the data source
(e.g., DNS versus ROM with k= 800 versus ROM with k= 3200)
encodes the diffusive nature of strain-stress fields which cannot
be readily characterized with quantitative inputs. Hence, our treat-
ment of data source motivates the use of LMGP and greatly simpli-
fies the emulation as it eliminates the manual conversion of the
source label to a quantitative variable.
Once LMGP is built, we are ready to run a multiscale simulation

where ROMs are used at the microscale instead of DNS, see
Fig. 1(d ). We first assign spatially varying microstructures to the
IPs on the macro-component. Then, based on the complexity of
the microstructures and any prior knowledge (if available) on the
macro-locations where excessive deformations can occur (e.g.,
near sharp corners), we choose the k values for ROM. Next, we
use the trained LMGP to assign the damage parameters that must
be used at ith macro-IP given the k and microstructure assigned
to it. Upon this assignment, we conduct the multiscale simulation
to find the performance of the macro-component while considering
microstructural porosity.

4 Technical Details
We first provide the details on damage modeling with our ROM

in Secs. 4.1–4.3. Then, we elaborate on the training process of
LMGPs in Sec. 4.4 and explain our optimization-based calibration
algorithm in Sec. 4.5.

4.1 Stabilized Micro-Damage Model. Damage includes
strain-softening which causes convergence issues in implicit time
integration schemes. To address this issue, we use a stabilized
damage model [9] to simulate microstructural effective responses
during fracture progression. This model decouples damage evolu-
tion from elasto-plasticity by introducing three reference RVEs
that share state variables with the original damaged RVE. By
tracing the elasto-plasticity in one of the referenced RVEs via a
classic implicit scheme, the effective fracture stress and states can
be mapped to the damaged RVE.
The homogenized damage stress in an arbitrary RVE can be

written as

SdM = C
d
M:E

el
M = C

d
M:(EM − Epl

M) (1)

where SdM represents the effective damage stress, Cd
M is the homog-

enized damaged tangent modulus matrix, EM, Eel
M, and Epl

M are the
RVE effective strain, elastic strain, and plastic strain, respectively.
The subscript M indicates that the variable is a macroscopic quan-
tity. The symbol “:” represents the double dot product that contracts
a pair of repeated indices.
The first reference RVE shares the same elasto-plastic deforma-

tion as the original RVE but is not damaged. Its effective stress is

therefore computed as

S1M = C
el
M:E

el
M = C

el
M:(EM − Epl

M) (2)

where S1M and Cel
M represent the homogenized stress and the undam-

aged elastic modulus, respectively (superscript 1 refers to the first
referenced RVE). By combining Eqs. (1) and (2), we can express
the referenced stress as

S1M = C
el
M:(C

d
M)

−1:SdM (3)

The second reference RVE has the same effective stress
(S2M = S1M) and material property as the first RVE but is assumed
to deform elastically. Thus, its effective elastic strain (Eel

M) is

Eel
M = (Cel

M)
−1:S1M = (Cel

M)
−1:S2M (4)

The effective stress and strain of the second reference RVE are
equivalently expressed as the volume average of its microscale
stress and strain as

S2M =
1
|Ω|

∫
Ω
S2mdΩ (5)

Eel
M =

1
|Ω|

∫
Ω
Eel
m2dΩ (6)

where |Ω| is the RVE volume, the subscript m indicates that the var-
iable is a microscopic quantity, and the microscale stress S2m is pro-
portional to the microscale elastic strain Eel

m2 at any microscopic
point by the elastic modulus ℂel via

S2m = Cel:Eel
m2 (7)

The third reference RVE has the same elastic strain as the second
one (Eel

m3 = Eel
m2) but its modulus is assumed to be identical to the

original fractured RVE as

S3m = Cd
m:E

el
m3 (8)

C
d
m = (1 − Dm)C

el (9)

whereCd
m is the microscale damaged tangent modulus andDm is the

damage parameter at a microscopic IP. The value of Dm is deter-
mined by the plastic strain states in the first reference RVE

Dm(�E
pl; α, �Ecr) = 1 −

�Ecr

�Epl
m1

exp (−α(�Epl
m1 − �Ecr)) (10)

where �Epl is the equivalent plastic strain, �Epl
m1 is the equivalent

plastic strain at a microscale IP in the first referenced RVE, and
�Ecr is the critical plastic strain. α is the damage evolutionary rate
parameter and a larger value of α results in faster material degrada-
tions and rapid effective stress drop amid softening. We note that
local damage is initiated (Dm= 0) when the effective plastic strain
equals the critical strain (�Epl

m1 = �Ecr) and damage reaches total
rupture (Dm= 1) when the effective plastic strain is much larger
than the critical plastic strain.
The effective damaged stress of the original RVE is assumed to

be equal to the homogenized stress of the third reference RVE and is
calculated as

SdM = S3M =
1
|Ω|

∫
Ω
S3mdΩ (11)

For the multiscale damage analysis in Sec. 5.4, the macroscale
damage parameter is computed as the ratio of the norms of effective
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stress tensors of the original and the first reference RVE as

DM = 1 −
‖SdM:S1M‖
‖S1M:S1M‖

(12)

where DM is the homogenized damage parameter representing the
fracture status of a macroscale IP (and its associated RVE) on a
macroscale component.

4.2 Condensation Method. When using the stabilized micro-
damage model of Sec. 4.1 in a multiscale simulation, the effective
elastic tangent moduli Cel

M is needed at each macroscopic IP, see
Eq. (2). Since we assign spatially varying RVEs with complex mor-
phologies to macro-IPs, Cel

M needs to be computed via variational
principles for each RVE [10]. This numerical procedure is needed
since the constitutive laws of the RVEs are not available in
closed form.
As variational calculations are expensive, we employ the conden-

sation method [11] to compute the effective tangent modulus of an
RVE. The condensation method starts by partitioning the micro-
structural system of equations as

Kpp Kpf

Kfp Kff

[ ]
δup
δuf

[ ]
=

δfp
0

[ ]
(13)

where δup and δuf represent the displacement variations at the pre-
scribed and free nodes, respectively, in an RVE where the indices p
and f represent the prescribed and free degrees of freedom, and δfp
is the external force on the nodes with prescribed forces.
Kpp, Kpf , Kfp, and Kff are the corresponding partitions of the
RVE’s stiffness matrix.
Eliminating δuf from Eq. (13) leads to a reduced system, with a

reduced stiffness Kr which directly relates the variations of the pre-
scribed displacements with nodal forces

Krδup = δfp (14)

Kr =Kpp −Kpf (Kff )
−1Kfp (15)

To transform Kr to the tangent modulus that relates variations of
stress and strain, we substitute Eq. (14) into the variational form of
the macroscopic stress

SM(X) =
1

|Ω0m|
∫
Γ0m

�tm ⊗ (x − x0)dΓ (16)

where x and x0 are the microscale IPs at the deformed and original
configurations, SM is the macroscale stress at the macroscopic IP X,
�tm is the microscale surface traction, Γ0m is the RVE boundary, and
⊗ denotes the tensor product between �tm and the position vector
(x − x0). Upon some algebraic modifications, the homogenized
tangent (elastic) modulus matrix of an RVE can be obtained as

Cel
M =

1
|Ω0m| [(x − x0)⊗Kr ⊗ (x − x0)]LT (17)

where “LT” denotes the transposition between the two left indices.
We note that even though the condensation method accelerates

the calculation of Cel
M for each RVE, parallel computations based

on it in a multiscale analysis are memory demanding and still
quite expensive. Hence, to avoid the online condensation proce-
dure, we utilize a GP to learn the relation between microstructural
morphology and effective elastic tangents for different RVEs
which are precomputed by the condensation method in an offline
stage.

4.3 Deflated Clustering Analysis (DCA). In a multiscale
simulation, the elasto-plastic response of the RVEs associated
with the macro-IPs can be obtained via the stabilized micro-damage
algorithm (see Sec. 4.1). These computations are very expensive

and so we use the DCA method [8] to dramatically accelerate
them. Compared to other clustering-based ROMs [7,9,12] which
primarily speed up micro analyses, our method can accelerate
both macro- and micro-simulations. Its high efficiency comes
from the fact that (1) the degrees of freedom are significantly
reduced from a large number of finite elements to a few clusters
by employing material clustering techniques and (2) the algebraic
system on the reduced system has much fewer close-to-zero eigen-
values (and hence better convergence behavior) compared to the
classic finite element system.
DCA uses clustering to agglomerate neighboring finite elements

to a set of interactive irregularly shaped clusters. Clustering is an
unsupervised machine learning technique to interpret and group
similar data. Among many mature clustering algorithms [13], we
adopt k-means clustering [14] in this work due to its simplicity.
We start the k-means clustering by feeding the coordinates of

element centers into a feature space where cluster seeds are ran-
domly scattered and serve as initial cluster means. Then, we
assign each element to the cluster with the closest mean. Mean-
while, cluster shapes are iteratively updated to minimize the
within-cluster variance, see an illustration in Fig. 2.
Mathematically, the clustering can be stated as the following

minimization problem:

C = argmin
C

∑k
I=1

∑
n∈CI

‖φn − �φI‖
2

(18)

where C represents the k-clusters with C = {C1, C2, . . . , Ck}.
φn and �φI are the coordinates of the nth element center and the
mean of the Ith cluster, respectively.
Upon clustering, we construct a reduced mesh by connecting

cluster centroids via Delaunay triangularization where topological
relations are preserved by checking the connectivity between clus-
ters. We assume the motions of cluster centroids are directly related
to the grouped nodes. Specifically, the displacement of the cluster
centroid u(x) is computed by interpolating the nodal displacements
via the polynomial augmented radial point interpolation method
[15] as

u(x) =
∑n
i=1

Ri(x)ai +
∑m
j=1

Zj(x)bj (19)

where ai is the coefficient of the radial basis function Ri at the ith FE
node and bj is the coefficient of the polynomial basis Zj. n and m are
the number of cluster nodes and the number of polynomial basis
functions, respectively. The coefficients ai and bj are determined
by enforcing Eq. (19) for all nodal displacements in the cluster
where polynomial basis and radial coefficients are assumed to
satisfy Eq. (20) to ensure solution uniqueness [15]

Fig. 2 Illustration of material points clustering: (a) a generic 2D
RVE is discretized with 5000 triangle finite elements and (b) the
elements are grouped into 100 clusters via k-means clustering
where the elements in the same cluster are indicated by the
same color (Color version online.)
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∑n
i=1

Zj(x)ai = 0, j = 1, 2, . . . , m (20)

We then augment the displacements of cluster centroids with
rotational degrees of freedom to represent rigid-body motions
(three translations and three rotations in 3D) in a deflation space
[16–18] where a reduced stiffness matrix is constructed with six
degrees of freedom on each node. Performing nonlinear analyses
on the reduced mesh and projecting the results back to the finite
element nodes at the end of computations reads

uji =Wj
iλi (21)

where uji is the displacement vector at the ith node in the jth cluster,
λi is the rigid-body motion of the centroid of the jth cluster, andWj

i
is the deflation matrix for the ith node group in the jth cluster

λj = [u jx, u jy, u jz, θ jx, θ jy, θ jz]
T (22)

Wj
i =

1 0 0 0 zji −yji
0 1 0 −zji 0 xji
0 0 1 yji −xji 0

⎡
⎢⎣

⎤
⎥⎦ (23)

where ujx and θjx are the displacement and rotation of the jth cluster
along the x-axis, and (xji, y

j
i, z

j
i) are the relative 3D coordinates of the

ith node with respect to the centroid of the jth cluster.
We note that material points are assumed to share the same stress

and strain values in each cluster. Hence, the local plastic strain fields
are reproduced in a diffusive manner with lower strain concentra-
tions which, in turn, delay the onset of localized fracture. This dif-
fusive behavior motivates the damage parameter calibration using
LMGP in the next section.

4.4 Latent Map Gaussian Process. GPs are widely used in
many applications for emulation [17–20]. The underlying idea of
GP modeling is to assume that the data originate from a multivariate
normal distribution. With this assumption, GP modeling involves
considering a parametric form for the mean and covariance func-
tions of the distribution and, in turn, estimating the parameters of
these functions.
Traditional GPs cannot handle categorical inputs because covari-

ance functions rely on the (weighted) distance between inputs while
categorical inputs are not typically endowed with a distance
measure. To address this limitation of GPs, we have recently devel-
oped LMGPs [1] that enable GPs to handle categorical inputs such
as the data source indicator in our case. As we show in Sec. 5.2, the
learned latent space of an LMGP provides a nice diagnostic tool that
can guide the analysis and design process.
Assume the observations are produced by the single-response

function η(s) which is modeled as

η(s) = f (s)β + ξ(s) + ε (24)

where f(s)= [ f1(s), …, fh(s)] is a vector of predefined parametric
basis functions depending on the ds dimensional input vector
s = [s1, s1, . . . , sds ]

T , β= [β1, …, βh]
T represent the unknown coef-

ficients of the basis functions, ɛ is the white noise, and ξ(s) is a zero-
mean GP with covariance function

cov(ξ(s), ξ(s′)) = c(s, s′) = σ2r(s, s′) (25)

where c(·,·) is the covariance function, σ2 denotes the amplitude,
and r(·,·) is the correlation function. An example r(·,·) is the Gauss-
ian kernel given by

r(s, s′) = exp −
∑ds
i=1

10wi (si − s′i)
2

{ }

= exp{(s − s′)TΩs(s − s′)}

(26)

where w = [w1, . . . , wds ]
T is the vector of roughness parameters and

Ωs = diag(10w). As it can be seen, r(·,·) in Eq. (26) does not accom-
modate categorical inputs as the distance between them is not
defined.
To handle categorical inputs, LMGP maps them into a quantita-

tive latent space which then makes it possible to use any distance-
based correlation function. Specifically, let us denote the categorical
inputs via t = [t1, . . . , tdt ]

T where variable ti has mi different levels.
Upon mapping, LMGP uses the Gaussian correlation function as

r(u, u′) = exp{−(s − s′)TΩs(s − s′) − ‖z(t) − z(t′)‖2} (27)

where u= [s;t] and z(t) = [z1(t), . . . , zdz (t)]
T is the learned dz dimen-

sional latent variable representing a particular combination of the
categorical variables. z(t) is computed by mapping the representa-
tion of each combination of the categorical variables τ(t) via

z(t) = τ(t)A (28)

where A is the projection matrix that is estimated during training.
Given a training dataset with n samples, the LMGP parameters

(i.e., A, β, w, and σ2) are estimated by maximizing the
log-likelihood function

[Â, β̂, ŵ, σ̂2] = argmax
A,β,w,σ2

−
n

2
log (σ2) −

1
2
log (|R|)

−
1
2σ2

(y − Fβ)TR−1(y − Fβ)

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ (29)

where log(·) is the natural logarithm, | · | denotes the determinant
operator, y= [y(1), …, y(n)]

T are the n outputs in the training data,
R is the correlation matrix with entries Rij= r(u(i), u( j)), and F is
the prior mean basis matrix with entries Fij= fj(u(i)).
Once the parameters are estimated, the predicted response at the

query point u* is obtained via

ŷ(u∗) = f (u∗)β̂ + gT (u∗)V−1(y − Fβ̂) (30)

where g(u∗) is an n× 1 vector with the ith element
gi(u∗) = σ̂2r(u(i), u∗), and V is the covariance matrix with entries
Vij = σ̂2r(u(i), u(j)).

4.5 Calibrations Via LMGP. The detailed steps of the pro-
posed framework are included in Algorithm 1. Our LMGP-based
data-driven calibration has two major steps which are detailed
below and demonstrated in Sec. 5.4.
In the first step, we build the training dataset where the responses

(UTS and toughness) characterize RVEs’ effective softening beha-
vior while the inputs are pore morphology descriptors, damage
parameters, and simulation fidelity level. While the latter input is
qualitative/categorical and is chosen based on the simulator cost,
the other inputs are all quantitative and selected via DoE. For train-
ing sample i, we generate the RVE corresponding to the ith set of
descriptors via descriptor-based reconstruction techniques. We
then deform this RVE via the simulator with the chosen fidelity
level which uses the damage parameters of training sample i.
Once the training dataset is built, we train the LMGP that simulta-
neously surrogates all the data sources.
In the second step, we solve an optimization problem to estimate

the damage parameters that must be used for an ROM such that it
predicts the same UTS and toughness as DNS which uses known
material properties (i.e., a fixed set of values for �Ecr and α) for
any RVE. The estimated �Ecr and α for an ROM depend on the
microstructural descriptors of the RVE (numerical inputs) and the
ROM’s fidelity level (a categorical input). Hence, the objective
function of the (inverse) optimization problem measures the differ-
ence between predictions of ROM and DNS conditioned on these
mixed inputs. Once �Ecr and α (i.e., the modified material properties)
are estimated for each RVE for all ROMs, we conduct multiscale
damage analyses where microscale simulations are carried out via
ROMs.
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Algorithm 1 Framework of the data-driven calibration for ROM
damage parameters via LMGP

1: procedure Calibrate the damage parameters of ROMs with differ-
ent morphologies and fidelity levels

2: ▷ DoE variables include pore descriptors, damage model param-
eters, and simulation fidelity levels

3: ▷ Fidelity level= 1, 2, and 3: use ROMs as simulators with dif-
ferent numbers of clusters (k)

4: ▷ Fidelity level= 4: use DNS as the damage simulator
5: ▷ Step-1:
6: Set up upper and lower bounds of DoE variables and load DoE
7: for i ← 1, N do ▷ Loop over a total of N DoE samples
8: Read pore descriptors at the DoE point-i
9: ▷ MCR: microstructure characterization and

reconstruction
10: Reconstruct RVE’s geometry via MCR based on pore descrip-

tor values
11: Load mesh module to generate FE mesh on the reconstructed

RVE geometry
12: ▷ CM: condensation method
13: Load CM (Section 4.2) to compute the effective elastic

modulus Cel
M

14: ▷ Assume the effective RVE properties are isotropic
15: Compute Lame constants from C

el
M

16: Save the effective Lame constants of the RVE-i
17: Read the damage parameters and fidelity level at the DoE

sample point-i
18: ▷ Damage responses include ultimate tensile strength (UTS)

and toughness
19: ▷ Perform damage analyses (Sec. 4.1)
20: if fidelity level ← {1, 2 or 3}, then
21: ▷ Use ROM for damage analyses
23: Read k and load ROM (k) to compute effective damage

responses (Sec. 4.3)
24: elseif fidelity level ← 4, then
25: ▷ Use DNS for damage analyses
26: Load DNS to compute effective damage responses
27: End
28: Save the effective damage responses for each DoE sample

point-i
29: end for
30: ▷ Step-2:
31: Read effective damage responses
32: Encode damage responses to let LMGP surrogate two damage

responses (UTS and toughness)
33: Load LMGP (Sec. 4.4) ▷ Consider model fidelity levels as

categorical variables
34: ▷ Calibrate ROM damage parameters (�Ecr and α) for different

RVE and fidelity level
35: for i← 1, N do ▷ Loop over N RVE samples
36: for j← {1, 2, 3} do ▷ Loop over three different ROM

fidelity levels
37: ▷ Use damage parameters as optimization variables
38: Minimize the difference of the damage responses between

DNSi and ROMij

39: Save the optimal ROM damage parameters to a database
40: end for
41: end for
42: return the database of the calibrated damage parameters of

ROMs
43: end procedure

5 Numerical Studies
We apply the proposed data-driven framework to calibrate the

ROMs in a multifidelity and multiscale model that simulates the
damage behavior of a metallic component with spatially varying
microstructures. In Sec. 5.1, we train a GP to emulate the

condensation method to accelerate the online calculation of C
el
M

for each microstructure. In Sec. 5.2, we construct a multifidelity
model via LMGPs which are then used in Sec. 5.3 to calibrate the
damage parameters of ROMs. In Sec. 5.4, we use the calibrated
ROMs to investigate the influence of porosity on the structural
damage responses of a multiscale model.
The material studied in this work is the cast aluminum alloy A356

whose elastic properties are

Y = 5.70e4 MPa, v = 0.33 (31)

where Y and v are Young’s modulus and Poisson’s ratio, respec-
tively. The alloy’s plasticity is modeled by following the J2 plastic-
ity theory with the piecewise linear hardening curve in Fig. 3. We
assume that plasticity satisfies an associative plastic flow rule
with the yield condition as

�S ≤ SY (�E
pl) (32)

where �S, �Epl, and SY are Mises equivalent stress, equivalent plastic
strain, and yield stress, respectively.
The softening behavior of A356 is modeled by the progressive

damage model in Eq. (10) with two damage parameters that are
applied for all ROMs and DNS: critical plastic strain (�Ecr) and
damage evolutionary rate parameter (α). The two damage parame-
ters are selected for calibration in this work because they both sig-
nificantly affect damage responses; however, more parameters can
be calibrated using our proposed framework.

�Ecr determines the onset of softening that influences the largest
stress that a material can withstand and α controls the amount of
released fracture energy which determines the degradation rate of
material properties amid damage evolution. The values of damage
parameters used in DNS are given in Eq. (33), while their values
for ROMs need to be calibrated based on microstructural morphol-
ogy and fidelity levels

�Ecr = 0.03; α = 100 (33)

Our method is implemented in MATLAB [21] and we obtain the
RVE responses on a high-performance cluster paralleled by 40
cores (AMD EPYC processor running at 4.1 GHz) with 120GB
RAM.

5.1 Gaussian Process Modeling for Microstructure
Effective Tangents. As described in Secs. 4.1 and 4.2, the effec-
tive elastic tangent matrix relates the effective reference stresses
with elastic strains. This matrix plays a fundamental role in contin-
uum damage analysis since it enables simulating the progressive
fracture evolutions at any IPs in a multiscale model, see Fig. 1(a).
However, computing the effective tangents often involves intensive
computational efforts even when condensation methods are applied,
see line 13 of Algorithm 1. Hence, we improve efficiency by

Fig. 3 Hardening behavior: piecewise linear hardening
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developing a GP surrogate that correlates porosity morphology with
microstructural effective tangent matrix.
We approximate the complex pores via overlapping ellipsoids

whose geometry and spatial distribution are characterized by the
following four descriptors: porosity volume fraction Vf, number
of pores Np, aspect ratio between ellipsoidal axes Ar, and the
mean nearest distance between centroids �rd . In addition, as we
assume to work with isotropic microstructural responses, the com-
ponents of the tangent matrix are reduced to two effective Lame
constants (μ and λ). In this manner, our GP aims to build a predic-
tive model between [Vf , Np, Ar , �rd] and [μ, λ]
To construct the GP, we first generate a training dataset with 160

RVEs. The inputs in this dataset are generated via a DoE where each
sample specifies the values of [Vf , Np, Ar , �rd] for each RVE. We
let the pore parameters satisfy the ranges in Eq. (34) where L repre-
sents RVE’s side length. Then, we use a microstructure reconstruc-
tion algorithm [22] to rebuild RVEs corresponding to DoE points.
We demonstrate 12 reconstructed microstructures from the DoE
datasets in Fig. 4 where their pore descriptors [Vf , Np, Ar , �rd]
are enumerated in Table 1. In the reconstructed RVEs, the pore
sizes are much smaller than the microstructures which reduce the
property variations across different microstructure realizations that
have the same four descriptors.

Once the dataset of RVEs is built, we use the condensation
method to calculate the effective Lame constants for each RVE.
Finally, we train a GP to emulate the relation between
[Vf , Np, Ar , �rd] and [μ, λ]

1% ≤ Vf ≤ 20%
10 ≤ Np ≤ 100
1 ≤ Ar ≤ 5
0.1L ≤ �rd ≤ 0.5L

⎧⎪⎪⎨
⎪⎪⎩ (34)

To test the GP’s accuracy, we split the dataset by using 80% for
training and 20% for validation. Comparisons of the predictions
with the test samples are shown in Fig. 5.
To assess the convergence and whether sufficient training data

are used, we split the dataset into 100 samples for training and 60
samples for testing. We sequentially increase the size of the training
data from 10 to 100 and evaluate the accuracy of the corresponding
GPs on 60 test samples (all GPs are evaluated on the same set of test
samples). The prediction errors are computed by Eq. (35)

Ey =
1
Nv

∑Nv

i=1

‖ŷi − �yi‖
‖�yi‖

(35)

where Nv is the number of validation samples, Ey is the relative pre-
diction error of responses y = [μ, λ], ŷi and �yi are the predicted
effective Lame constants of the ith RVE. The convergence curve
is shown in Fig. 6 where it is observed that with the increase of
training samples, prediction errors monotonically decrease. With
100 samples the prediction error drops to lower than 0.4%, indicat-
ing highly accurate predictions. Therefore, we use the GP emulated
effective modulus to replace the condensation method amid online
computations to accelerate damage analyses for all microstructures.

5.2 LMGPModeling of Damage Parameters. In this subsec-
tion, we train an LMGP that is used in Sec. 5.3 for ROM calibration,
see Fig. 1(c) where the LMGP is used in the inverse optimization.
We first demonstrate the importance of calibration and then
provide the details on the training and validation of the LMGP.
To demonstrate the importance of parameter calibrations of

ROMs, let us consider the microstructure in Fig. 7(a) with pore
descriptors [Vf , Np, Ar , �rd] = [15.9%, 25, 1.4, 24.3] and
damage parameters in Eq. (33). We subject this RVE to the

Fig. 4 12 examples of reconstructed microstructures in (a)–(l): the values of microscale
porosity descriptors and effective Lame constants are listed in the Table 1

Table 1 Pore descriptors and effective Lame constants

RVE Vf Np Ar �rd μ (e10) λ (e10)

(a) 6.56% 26 1.31 23.3 1.94 3.51
(b) 9.21% 20 3.33 19.7 1.82 3.05
(c) 2.06% 13 1.14 28.1 2.08 3.96
(d) 3.29% 29 2.37 20.5 2.03 3.78
(e) 9.97% 48 1.16 20.4 1.85 3.23
( f ) 7.80% 20 2.15 25.9 1.89 3.31
(g) 1.92% 22 4.95 22.4 2.08 3.92
(h) 3.12% 60 2.11 16.9 2.04 3.81
(i) 2.61% 31 1.09 21.6 2.07 3.91
( j) 9.70% 51 2.47 18.2 1.82 3.09
(k) 1.15% 36 1.84 21.1 2.11 4.03
(l ) 4.48% 77 1.43 14.5 2.01 4.02

Note: The numbers correspond to the reconstructed microstructures in
Fig. 4.
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deformation gradient in Eq. (36) and compute its responses via the
DNS using 68,675 finite elements as shown in Fig. 7(b) where sig-
nificant strain concentrations are observed in the vicinity of pores.
We then model this RVE via an ROM with 3200 clusters using
the same damage parameters as the DNS. The plastic strain distribu-
tions are shown in Fig. 7(c) which demonstrates the diffusive nature
of local clustering

FM =
1.1 0 0
0 0.95 0
0 0 0.95

⎡
⎣

⎤
⎦ (36)

Comparison of strain distributions in Fig. 7 demonstrates that the
label of the data source (i.e., DNS or ROM), which we consider as a

categorical variable in LMGP, must encode the diffusive nature of
the local solutions. Additionally, compared to the DNS, the cluster-
wise solutions of ROMs have lower magnitudes of plastic strains
which result in delayed fracture initiation, higher UTS, and larger
material toughness, see Fig. 8(a) and Table 2.

Fig. 5 Emulation accuracy: comparison of the actual values of
the two microstructural effective Lame constants against the
GP predictions on unseen test samples in (a) and (b).

Fig. 6 Error convergence: GP estimation errors of the predicted
Lame constants with respect to the number of training points

Fig. 7 Equivalent plastic strain fields: (a) the porosity morphol-
ogy of a microstructure with 25 pores, (b) plastic strains are sim-
ulated via DNS, (c) plastic strains are approximated by ROM (k=
3200) without calibration, and (d ) plastic strains are approxi-
mated by ROM (k=3200) with calibration

Fig. 8 Importance of calibration: (a) the effective stress–strain
curves without damage parameters calibration and (b) the effec-
tive response with calibration
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The accuracy of ROMs can be improved by calibrating their
damage parameters (�Ecr and α). We illustrate calibration effects
on the local strain concentrations and effective behaviors in
Figs. 7(d ) and 8(b), respectively. It is evident that compared to
the ROMs with the damage parameters of DNS, the calibrated
ROMs provide more accurate and effective stress–strain responses.
Specifically, the calibration algorithm calibrates (i.e., reduces) the
ROMs’ critical plastic strain to induce early softening so that their
UTS values become closer to that observed in DNS. Meanwhile,
the calibration also decreases the ROMs’ damage evolutionary
rate parameters to compensate for the toughness reduction due to
early softening.
We further compare the values of the material toughness and

UTS between DNS and ROMs in Table 2 where we find that the
accuracies of both damage responses are improved after calibra-
tions. The improvement is demonstrated by the enumerated errors
in Table 3 where we observe that the calibrations significantly
reduce the ROMs’ model errors (r) for all ROM fidelity levels
(k = 800, 1600, 3200). Additionally, the magnitudes of the normal-
ized errors (r= rtoughness, rUTS2) continuously drop with the increase
of clusters, which validates our observation in Fig. 8 that the ROM
with more clusters provides closer solutions to the DNS in both pre-
and post-calibration scenarios.
We provide the values of the calibrated damage parameters in

Table 4. We note that with the decrease of simulation fidelity
levels from DNS to the ROMs (k= 3200, 1600, 800), both values
of �Ecr and α decrease. This trend implicitly validates our previous
observation in Figs. 7(b) and 7(c) that fewer clusters result in
more diffusive cluster-wise plastic strains with delayed damage

initiations in Fig. 8(a). This is because, to counteract the artificial
delay of softening, the calibration algorithm needs to lower �Ecr so
that softening occurs at smaller deformation conditions. Meanwhile,
the calibration decreases α to lower the material’s degradation rates
during damage evolutions which helps to approximate ROMs’
toughness to that of DNS.
Once the accuracy of ROMs is improved via calibration, they can

substitute DNS. We compare the computational time of DNS
against the ROMs in Fig. 9 by CPU time. We observe that while
DNS takes 29.8 h to finish the damage simulation, it only takes
about 68.8, 27.9, and 15.6 min for the ROMs with 3200, 1600,
and 800 clusters, respectively. The ROMs’ computational costs
can be further reduced to online time since their offline stages (clus-
tering and preprocessing) are performed only once and are unneces-
sary in future calculations. Thus, by comparing the online time with
DNS, the acceleration factors of the ROMs with 3200, 1600, and
800 clusters are 44.1, 99.9, and 242.9, respectively.
After demonstrating the necessity of ROM calibration, we now

describe the proposed LMGP-based calibration approach. Com-
pared to manual calibrations, the proposed data-driven approach
is highly efficient in automatically allocating the optimal values
of the damage parameters for the ROMs based on their fidelity
levels as well as the microstructure.
To use LMGP for calibration, we generate a dataset consisting of

six inputs x= [x1, …, x6]
T and two outputs y, as shown in Table 5.

The first four inputs represent the pore descriptors (i.e.,
[Vf , Np, Ar , �rd]) and the last two inputs represent the two
damage parameters (i.e., evolutionary rate parameter α and critical
effective plastic strain �Ecr). We generate DoE sample points via
Sobol sequence by satisfying the ranges of descriptor values and
damage parameters in Eqs. (34) and (37), respectively. Two
LMGP outputs are the two damage responses (UTS and material
toughness)

1% ≤ �Ecr ≤ 3%
10 ≤ α ≤ 100

{
(37)

We append each sample point with a categorical variable to
encode the data source which is denoted by t1= {1, 2, 3, 4}
where label 4 corresponds to DNS while labels 3, 2, and 1 corre-
spond to the ROM with k= 3200, k= 1600, and k= 800 respec-
tively. To enable LMGP to simultaneously surrogate two damage
responses, we also appended the samples with a second categorical
variable encoding the type of responses by t2= {1, 2} where label 1
corresponds to UTS and label 2 indicates material toughness. Part of
the resulting single-response training dataset is shown in Table 5.
Our entire dataset contains 600 samples that are created from four
different fidelity sources: 70, 110, 170, and 250 samples are from
DNS and the ROMs with 3200, 1600, and 800 clusters respectively.
To investigate the effects of sample sizes on prediction accuracy,

we fit our LMGP to 100, 200, 300, and 400 samples and test its

Table 2 Damage responses

Simulation fidelity

Precalibration After calibration

UTS Toughness UTS Toughness

DNS 1.03e8 3.71e6 — —
k= 800 1.15e8 4.10e6 1.07e8 3.85e6
k= 1600 1.09e8 3.93e6 1.043e8 3.783e6
k= 3200 1.06e8 3.85e6 1.046e8 3.776e6

Note: Values of the UTS and toughness of DNS and ROMs for the
microstructure in Fig. 7.

Table 3 ROM prediction error

ROM clusters (k)

Errors (r) w/o LMGP
calibration (%)

Errors (r) w. LMGP
calibration (%)

UTS Toughness ‖r‖ UTS Toughness ‖r‖

800 11.5 10.6 15.61 3.74 3.64 5.22
1600 5.5 5.8 7.99 1.28 1.96 2.34
3200 3.2 3.7 4.86 1.55 1.73 2.33

Note: Errors of ROMs on UTS and toughness for the microstructure in
Fig. 7.

Table 4 Calibrated damage parameters

Simulation fidelity �Ecr
α

ROM (k= 800) 0.021 36.31
ROM (k= 1600) 0.024 47.65
ROM (k= 3200) 0.027 72.27
DNS 0.03 100

Note: Values of calibrated ROM damage parameters for the microstructure
in Fig. 7.

Fig. 9 Time reduction: computational time comparison between
DNS with ROMs
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performance on 200 testing samples across 50 random repetitions.
We note that our dataset is unbalanced because we have fewer
samples from high-fidelity source that requires high computational
costs and much more data points from low-fidelity models. In par-
ticular, 10% of the training samples are obtained from DNS, 20%
from ROM with 3200 clusters, 30% from ROM with 1600 clusters,
and 40% from ROM with 800 clusters. These ratios are the same
across all sub-datasets that are created using the entire dataset.
We scale LMGP outputs to [0, 1] and compute the mean absolute

errors (MAE) of predictions as shown in Fig. 10. We observe that
with the increase of training samples, both MAE and its variance
decrease. Therefore, we choose 400 samples as our training
dataset which contains 40 samples of DNS, 80, 120, and 160
samples from the ROMs with 3200, 1600, and 800 clusters, respec-
tively. Based on users’ computational budgets, various combina-
tions of different fidelity sources can be explored. Minimizing the

costs of training datasets for multifidelity models is, however, out
of the scope of this work.
From Fig. 10, we also notice that the scale of the vertical axis in

Fig. 10(b) is smaller than that of Fig. 10(a), suggesting that our
LMGP provides better predictions for toughness than UTS (we
elaborate on the underlying reasons below).
Once LMGP is trained, we can visualize the learned latent space

where each combination of the two categorical variables is mapped
to a latent position in Fig. 11. Based on the latent points of the
underlying (fidelity level, response) combinations, it is evident
that latent axes z1 and z2 encode, respectively, the types of
damage response and the simulation fidelity levels (note that this
encoding is learned automatically by LMGP). We observe that
the scale of z1 is one order of magnitude larger than z2, suggesting
that the latent points are primarily grouped by their damage
responses (z1). For the same damage response, the latent points
are further distinguished by their fidelity levels (z2). Specifically,
we find that the positions of k= 3200 are far from k= 800 but
close to DNS, suggesting the damage responses predicted by
ROMs with 3200 clusters share more similarity with the DNS
than the ROMs with only 800 clusters. This also indicates that low-
fidelity models (e.g., k= 800) exhibit model form error compared to
the higher-fidelity sources.
LMGP provides significant insights and interpretations of the

characteristics of the studied datasets in Fig. 11. For example, the
vertical distance between DNS and k= 800 along the z2 direction
is about 0.06; suggesting a correlation value of (exp{−0.062}=
0.9964) between the two data sources, see Eq. (27). Given this cor-
relation, LMGP can use the knowledge from the low-fidelity data
(i.e., k= 800) to improve its accuracy in emulating the high-fidelity
source (i.e., DNS). We also notice that the horizontal distance
along the z1-axis is about 0.6, resulting in the correlation value of
exp{−0.62}= 0.6977. It suggests the two responses are positively
correlated, consistent with our expectation that the delayed fracture
initiation from ROMs’ diffusive local solutions not only increases
predicted UTS but also enlarges material toughness, see the discus-
sion in Fig. 8(a).
To assess LMGP’s accuracy, we split the 600 sample points into

training and validation sets where 400 samples are used for training
and the remaining 200 samples are for validation. The validation
dataset contains 20, 40, 60, and 80 samples from DNS, the ROM
with k= 3200, 1600, and 800, respectively. LMGP’s prediction
accuracy is quantified by the MAE in Table 6 where it is observed
that the prediction errors are higher for the highest-fidelity source
(DNS) as well as the lowest-fidelity ROM with 800 clusters com-
pared to the other two fidelity sources. The reason for the large pre-
diction errors on DNS comes from its data scarcity, and the errors of
k= 800 are due to its inherent model errors.

Table 5 Training dataset of LMGP

x1 x2 x3 x4 x5 x6 t1 t2 y

0.021 13 1.14 28.1 54.7 0.015 4 1 1.12e8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.066 26 1.31 23.3 71.2 0.017 4 1 1.15e8
0.098 87 1.89 12.4 75.6 0.020 3 1 1.13e8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.045 77 1.43 14.5 80.7 0.023 3 1 1.26e8
0.030 70 3.93 12.6 73.4 0.066 2 1 1.21e8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.026 31 1.10 21.6 98.3 0.029 2 1 1.33e8
0.078 34 2.77 17.4 21.3 0.012 1 1 1.08e8
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.016 88 3.13 14.4 61.7 0.027 1 1 1.36e8
0.021 13 1.14 28.1 54.7 0.015 4 2 3.14e6
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.067 26 1.31 23.3 71.2 0.017 4 2 3.00e6
0.098 87 1.89 12.4 75.6 0.020 3 2 3.26e6
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.045 77 1.43 14.5 80.7 0.023 3 2 3.93e6
0.030 70 3.93 12.6 73.4 0.066 2 2 3.07e6
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.026 31 1.10 21.6 98.3 0.029 2 2 4.72e6
0.078 34 2.77 17.4 21.3 0.012 1 2 3.17e6
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0.016 88 3.13 14.4 61.7 0.027 1 2 5.05e6

Notes: Four microstructure descriptors (x1 ∼ x4), two damage parameters
(x5 ∼ x6), and two categorical inputs (t1 ∼ t2) which encode data source
and response type. The data are color-coded based on t2 (green is UTS
and blue toughness). (Color version online.)

Fig. 10 LMGP’s MAEs: normalized MAE of UTS and toughness with respect to different numbers of training samples
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We plot LMGP’s predictions against validation samples for the
two damage responses in Fig. 12 where the predictions of both
responses are found to be quite accurate. Specifically, we notice
that the predictions of UTS have higher errors than those of tough-
ness. This observation is consistent with our discussions in Fig. 10.
One plausible reason is that UTS, as a point measurement of the
maximum stress that an RVE can tolerate, is sensitive to some
important factors that are not considered in this surrogate, e.g.,
the directions of crack propagations. In contrast, RVE toughness,
which is a global estimation for the amount of released fracture
energy amid damage evolution (which is an integral quantity), is
characterized by our model quite well.

5.3 Calibration of Damage Parameters. To improve solution
accuracy, the damage parameters of ROMs need to be calibrated as
shown in Fig. 1(c). We perform the calibration by solving an inverse
optimization problem whose objective function is evaluated via
LMGP. We estimate the calibration parameters for the ith micro-
structure and the jth source level such that the estimated damage
responses from ROM match the ones from DNS that uses the true
damage parameters: αDNS= 100 and �Ecr

DNS = 0.03. The optimization
problem is hence formulated as

[α̂, �Ecr] = argmin
α,�Ecr

‖yp(xiDNS) − yp(x
i
j)‖2 (38)

where yp(·) are the predicted damage responses by LMGP and
xiDNS = [Vi

f , N
i
p, A

i
r , �r

i
d, αDNS, �E

cr
DNS, t1 = 4, t2] represents the input

vector of the ith microstructure for predicting the responses of
DNS. xij = [Vi

f , N
i
p, A

i
r , �r

i
d , α, �E

cr, t1 = j, t2] is the input vector of

Fig. 11 Learnt latent space of LMGP: each latent position
encodes simulation fidelity level and damage response

Table 6 Error analysis

Simulation fidelity

MAE

UTS Toughness

ROM with k= 800 0.0430 0.0152
ROM with k= 1600 0.0277 0.0104
ROM with k= 3200 0.0274 0.0100
DNS 0.0444 0.0283

Note: MAE of the LMGP’s prediction for the two damage responses and
four data sources.

Fig. 12 Performance on unseen test data: comparison of the true responses against the LMGP’s predictions for (a) UTS and
(b) toughness

Fig. 13 Calibrated damage parameters: calibrated damage parameters of 600 samples simulated by ROMs with three fidelity
levels where two RVEs with distinct pore morphologies are highlighted
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the ith microstructure for predicting the damage responses for ROM
at the jth fidelity level (note that we pass t2 as a vector to get both
damage responses).
We use a gradient-based optimization method to solve Eq. (38).

In Fig. 13, we demonstrate the values of the calibrated damage
parameters for the 600 microstructures in the database. We note
that the calibration is performed based on an inverse optimization
which tends to minimize the difference between the damage
responses of DNS and ROM where both are surrogated by
LMGP, that is, no online microstructure simulation is performed
for calibration. Since the optimization relies on an inexpensive sur-
rogate, its computational cost is very small.
From Fig. 13, we observe the same trend across all samples.

Specifically, we highlight the calibrated damage values of two
distinct RVEs that were not used in training the LMGP. We
find that (i) the values of the ROM’s calibrated damage parame-
ters are smaller than those of DNS (represented by dashed lines)
and (ii) the values of calibrated damage parameters are closer to
the DNS’ values as we increase the number of clusters (k). For
instance, the calibrated parameters of both RVEs with 800 clus-
ters are much smaller than their counterparts in DNS or ROMs
with 1600 or 3200 clusters. The underlying reason is that as k
decreases, the ROM’s local plastic strain becomes more diffusive
which delays damage initiation and artificially increases UTS and
toughness. Therefore, to counteract this diffusive behavior, the
calibrated damage parameters tend to reduce the strength of the
materials to induce early damage such that the ROMs can faith-
fully approximate DNS.

5.4 Multiscale Damage Analyses. Since manufacturing-
induced porosity significantly affects material properties [23–25],
in this section we can apply the reduced multiscale damage
model to a 3D L-shape bracket to quantify the impact of micro-
porosity on the bracket’s fracture behavior. Our simulations
follow Fig. 1(d ) where the calibrated ROMs are used to accelerate
the microscale analyses in the multiscale model.
The dimensions of the L-bracket are shown in Fig. 14. The

bracket is fixed on the top surface, and it is subject to a Dirichlet
boundary condition on the right surface (d= 20mm). The bracket
model is discretized with 2113 linear tetrahedron elements with
reduced integrations.
For multiscale analysis, we divide the bracket into two subdo-

mains: a monoscale region and a multiscale region with spatially
varying porosity distribution. This choice is motivated by the

observation that under large deformations the fracture happens in
the multiscale domain where high accuracy and microstructural
effects are needed, and hence the other regions of the bracket can
be modeled as a single scale.
For each of the 147 IPs in the multiscale region, we randomly

assign a microstructure from the database generated in Sec. 5.2.
The effective damage behavior in each microstructure is simulated
by ROMs with three fidelity options: 800, 1600, or 3200 clusters.
For each ROM with a selected cluster number, its optimal
damage parameters are readily available from the LMGP-based cal-
ibration process described in Sec. 5.3. Specifically, among the 147
macro-IPs, 77 IPs are associated with the RVEs simulated by 800
clusters, 50 and 20 IPs are assigned to the RVEs with 1600 and
3200 clusters, respectively. We note that the RVEs with higher
numbers of clusters are assigned to the IPs with anticipated soften-
ing that is predicted by a preliminary single-scale simulation
without micro-pores, see the two highlighted RVEs with distinct
local pore morphologies that are assigned to different IPs in the
multiscale region in Fig. 14.
In our multiscale simulations, we ensure the released fracture

energy is consistent between the scales by equating microstructure
Fig. 14 Multiscale model: the dimensions and boundary condi-
tions of a 3D L-shape bracket model with a thickness of 5 mm
where two RVEs with distinct pore descriptors are associated
with two macroscale IPs in the multiscale domain

Fig. 15 Results of multiscale damage analysis: (a) the top view
of the fracture patterns on the L-bracket model, (b) the distribu-
tions of equivalent plastic strains in the two highlighted RVEs,
and (c) the force–displacement responses
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volumes to macroscopic mesh sizes. Additionally, we apply a non-
local damage function with a feature size of 15mm on the bracket
model to prevent pathological mesh dependency and convergence
difficulty.
We demonstrate the simulated fracture pattern, local plastic strain

distributions, and load–displacement response (with and without
multiscale treatment) in Fig. 15. In Fig. 15(a), we demonstrate the
macro-fractures by elements’ effective damage values DM in
Eq. (12) where DM= 1 represents complete material ruptures. We
notice that the highlighted two macro-IPs are located in the
damage zone, and we plot the distributions of microscopic equiva-
lent plastic strains in Fig. 15(b) exhibiting significant local strain
concentrations. Specifically, we observe that large plastic strains
are accumulated in proximity to pore surfaces in the two RVEs
which cause the macroscale fractures in Fig. 15(a). In Fig. 15(c),
we observe that porous microstructures significantly deteriorate
the bracket’s load-carrying capacity which drops by 10.22% from
70.86 N to 63.62 N, and the bracket breaks at a much lower displa-
cement boundary condition. Therefore, compared to the single-
scale model that only considers dense materials and neglects
pores, the multiscale model provides us with a more realistic predic-
tion by considering fractures across scales.
Our multiscale simulation is paralleled by 40 CPU cores on a

high-performance HPC, and it is finished in 15.2 h. Based on the
efficiency comparison between the ROM and DNS in Fig. 9, the
estimated computational time for DNS (classic FE2) is more than
2623.5 h (109.3 days), that is, our calibrated ROM speeds up the
overall computation compared to DNS with an acceleration factor
of 172.6.

6 Conclusion
We propose a multifidelity reduced-order model for multiscale

damage analysis that considers manufacturing-induced spatially
varying porosity. Our model is not only significantly faster than
multiscale simulations based on the FE2 approach but also has
lower memory requirements. Our approach relies on a mechanics-
based ROM that accelerates the microscale elasto-plastic-damage
deformations by clustering the degrees of freedom. Since this clus-
tering artificially increases microstructures’ tolerance to damage ini-
tiation and evolution, we develop a calibration scheme to estimate
the damage parameters that must be used in ROM such that it can
faithfully approximate high-fidelity simulations.
We employ LMGPs to build a multifidelity emulator which is then

used in our calibration scheme. In addition to providing high accu-
racy and versatility for emulation, we show that the learned latent
space of LMGP is interpretable and provides insights into the
problem (e.g., determining the relative accuracy of multiple ROMs
with respect to DNS). This LMGP-based calibration scheme differs
from existing calibration works such as Refs. [26,27] which focus
on calibrating simulations using experimental data. In contrast to
these works, we focus on calibrating ROMs against DNS such that
these ROMs can be used in multiscale simulations where microstruc-
tural details vary over the macro-component.
In this work, we use the calibrated ROMs in a multiscale simula-

tion to study the effect of spatially varying micro-porosity on the
macroscopic response of an L-bracket model. Our results indicate
that porosity noticeably decreases the strength of the material and
hence must be considered in “design for fracture.”
In this work, we neglect the inherent uncertainty in material

properties, i.e., our simulations (based on either ROMs or
DNS) are deterministic. More realistic fracture modeling requires
embedding uncertainty sources in our calibration scheme and
multiscale simulations. With this treatment, we will obtain prob-
abilistic distributions for the calibrated parameters (conditioned
on a selected fidelity level). These microscale distributions are
spatially correlated at the macroscale and quantifying their
effects on the macroscale quantities relies on sampling technique
[28] (e.g., based on Markov chain Monte Carlo). We believe our

ROMs provide a unique opportunity for such sampling-based
multiscale uncertainty quantification and plan to pursue this direc-
tion in our future works.
The proposed data-driven multifidelity damage model in this

paper opens up some interesting future research directions. For
example, the ROMs with calibrated damage parameters can effi-
ciently generate material response databases correlating intricate
microstructural morphologies with effective material behaviors
under complex loading conditions. Such databases enable deep
learning-based surrogates for a direct mapping between material
local morphology and their responses for computationally demand-
ing nonlinear analyses. In addition, applying our multifidelity
model to investigate the effects of material uncertainty on structural
behaviors is vital for robust designs as engineered material systems
are inherently embedded with manufacturing-induced uncertainties
that propagate across scales.
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