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ABSTRACT 
Dynamic stability is a key performance metric of motor 

vehicles and has a direct impact on passenger experience and 
customer satisfaction. The desired vehicle dynamics behavior 
can be achieved by optimizing the design of vehicle suspensions. 
Two challenges are associated with this design optimization task. 
The first one arises from the large number (e.g., 40 or 50) of 
design variables in modern suspension systems. Such multitude 
of variables not only makes it expensive to build a training 
dataset for metamodeling purposes, but also renders accurate 
surrogate modeling extremely difficult. The second challenge is 
a lack of guideline for choosing a proper multidisciplinary design 
optimization (MDO) method for a single MDO problem such as 
one for vehicle suspension design. In this paper, an enhanced 
Gaussian process (GP) metamodeling technique is developed 
and several versions of the collaborative optimization (CO) 
method are compared via a vehicle suspension design problem. 
In our enhanced GP modeling method, the model parameters are 
efficiently estimated using the smoothing effect of the so-called 
nugget parameter to reduce the search space. In addition, various 
versions of the CO method are studied where the enhanced 
collaborative optimization (ECO) method is found to perform 
the best. A simplified ECO formulation is also investigated to 
provide insights for future engineering applications. 
 
1 INTRODUCTION 

Vehicle dynamics greatly affects driving experience and 
customer satisfaction. The design of a vehicle system for 

achieving desired dynamic performance is challenging for two 
main reasons. First, the large number of design variables, 
coupled with the expensive computer simulations, makes it 
difficult to generate sufficient samples with design of 
experiments (DoE) for surrogate modeling. Even with a 
moderate number of samples, fitting a metamodel in such high 
dimensions is a daunting task. Under these circumstances, 
Gaussian processes (GP) provide a great choice of surrogate 
models as they are very flexible in terms of learning complex 
input-output maps. However, in our application to a vehicle 
suspension design problem with 46 design variables and 460 
sample points for each response variable, no current GP 
modeling method in literature can fit accurate GP models within 
a manageable time. Second, it is challenging to choose a proper 
multidisciplinary design optimization (MDO) method for 
designing a vehicle system. Although a family of collaborative 
optimization (CO) [1-5] methods have been proposed to solve 
MDO problems in the past, their applications to a single MDO 
problem is not thoroughly investigated. The objective of this 
paper is to tackle the two challenges by developing an enhanced 
GP modeling technique and comparing different versions of the 
CO method via their application to a multidisciplinary vehicle 
suspension design problem. 

GP models [6-10] are probably the most popular 
metamodels (aka surrogates, emulators, or response surfaces) 
used to replace expensive computer simulations. They have also 
been widely used in other applications, e.g., readily quantifying 
the prediction uncertainty [8, 9], helping identify the most 
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important inputs in the original computer model [11], and 
enabling tractable Bayesian calibration and bias correction [12-
16]. However, as to be detailed in Section 2.1, the task of 
estimating the hyperparameters of a GP model becomes 
problematic when the number of design variables is very large. 
To resolve this issue, we develop an enhanced GP modeling 
method with a new two-stage hyperparameter estimation 
framework. In the first stage, with a relatively small computation 
cost, we effectively reduce the hyperparameter search space by 
leveraging the smoothing effect of a so-called nugget parameter. 
With the shrunk search space, the optimal hyperparameters can 
be efficiently found in the second stage. This enhanced method 
is under a general setting and readily applicable to any high-
dimensional GP modeling tasks. 

Among all the MDO methods developed in the past two 
decades, analytical target cascading (ATC) [17, 18] and 
collaborative optimization (CO) [1] are the two most popular 
ones applied to distributed engineering systems, with the former 
developed more specifically for hierarchical systems. ATC is 
well studied and has been successfully applied to vehicle 
suspension design problems that have hierarchical structures [19, 
20]. CO has several major versions in literature, i.e., original CO 
[1], modified CO (MCO) [2, 3], and enhanced CO (ECO) [4, 5]. 
The MCO has very similar formulation as the original CO, but 
replaces L2-norms with L1-norms for all the consistency terms 
and transforms the system problem constraints into penalties. 
Compared with the previous two, ECO switches the roles of the 
system problem and the disciplinary sub-problems in terms of 
optimizing the global objective and enforcing the system 
consistency. It also introduces linearized nonlocal constraints in 
each sub-problem. While ECO manifests superior performance 
to its predecessors, it has more complex formulation especially 
due to the introduction of linearized nonlocal constraints. 
Therefore, in real applications, there is a potential trade-off 
between optimization performance and ease of implementation 
by choosing different versions of CO methods, which has not 
been well studied in literature. Herein we investigate these 
versions via a multidisciplinary vehicle suspension design 
problem. The goal of the design is to optimize the vehicle 
durability and riding comfort, which are quantified by the 
vehicle dynamic responses in simulations. Different road 
conditions under which the vehicle dynamics is simulated give 
rise to different analysis disciplines. Based on our 
comprehensive comparison between different versions of the CO 
method, the ECO formulation has the best performance and a 
simplified version of ECO is an alternative which compromises 
method performance for ease of implementation. 

The remainder of the paper is organized as follows. The 
background on GP modeling along with our enhanced method is 
elaborated in Section 2. Details regarding three versions of the 
CO method and the theoretical comparison between them are 
provided in Section 3. The application of the enhanced GP 
modeling and different versions of the CO method to a vehicle 
suspension design problem is detailed in Section 4. Concluding 
remarks are provided in Section 5. 
 

2 ENHANCED GAUSSIAN PROCESS (GP) 
METAMODELING METHOD 
In this section, we first briefly describe the GP modeling 

procedure (see [7, 9, 21] for more details) and comment on the 
associated computational challenges. Then, with a 1ܦ 
illustrative example, we elaborate on our technique to improve 
the efficiency of estimating the hyperparameters in GP models 
for problems with high dimensionality. 
 
2.1 GP Modeling Procedure 

Let ࢞ ൌ ሾݔଵ, ,ଶݔ … ,  ሺ࢞ሻ denote, respectively, theݕ ௗሿ்andݔ
set of input variables over the ݀-dimensional input space Թௗ 
and the scalar response function. Suppose we observe ࢟ ൌ
ሾݕሺ࢞ଵሻ, ,ሺ࢞ଶሻݕ … , ሺ࢞௡ሻሿ்ݕ ൌ ሾݕଵ, ,ଶݕ … , ௡ሿ்ݕ  at ݊  distinct 
locations ࡰ ൌ ሼ࢞ଵ, ࢞ଶ, … , ࢞௡ሽ and wish to predict 	  ሺ࢞଴ሻ forݕ
any ࢞଴߳Թௗ. The basic idea is to model ݕሺ࢞ሻ as a realization of 
a GP, denoted by ܻሺ࢞ሻ, with the parametric mean (expected 
value,	   ሾ∙ሿ) and covariance functions (ܿሺ∙,∙ሻ) beingܧ
 [ ( )] ( ) ,TE Y x m x β   (1) 

 ( , ) [ ( ), ( )],c Cov Y Y x x x x  (2) 

where ࢼ  and ࢓ሺ࢞ሻ ൌ ൣ݉ଵሺ࢞ሻ,݉ଶሺ࢞ሻ, … ,݉௤ሺ࢞ሻ൧
்
  are, 

respectively, vectors of unknown parameters and known basis 
functions (e.g., linear, quadratic, exponential). As for the 
covariance function, ܿሺ࢞, ࢞ᇱሻ, the most common choice is 
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where	 	ଶ  is the variance ofߪ ܻሺ࢞ሻ , ݎሺ࢞, ࢞ᇱሻ  is the Gaussian 
correlation function, and ࣓ ൌ ሾ߱ଵ, ߱ଶ,… , ߱ௗሿ் are the 
correlation parameters of ݎሺ࢞, ࢞ᇱሻ that control the smoothness 
of the model (a large ߱௜  indicates a rough response surface 
along dimension	 	, ࢼ .( ݅ 	ଶ  andߪ ࣓  are collectively called the 
hyperparameters, and the essential part of fitting a GP model is 
to estimate the hyperparameters via either the maximum 
likelihood estimation (MLE) or cross-validation (CV). Here, we 
use the MLE method as it is more robust and efficient [7]. 

In the MLE framework, the hyperparameters are estimated 
by maximizing the multivariate Gaussian likelihood function,  
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or equivalently, 
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where logሺ∙ሻ  is the natural logarithm,	  matrix  ݍis an ݊ൈ  ࡹ
with ݅௧௛  row being ்࢓ሺ࢞௜ሻ , and	  is an ݊ൈ݊  matrix with  ࡾ
ሺ݅, ݆ሻ௧௛  element being ܴ௜௝ ൌ ,൫࢞௜ݎ ௝࢞൯  for ݅, ݆ ൌ 1,… , ݊ . A 
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common approach for simplifying this optimization problem is 
to find	  ଶ as functions of ࣓ to solve the optimizationߪ and ࢼ
only in terms of ࣓ . Setting the partial derivatives of the 
objective in Eqn. (5) with respect to	  ଶ to zero yieldsߪ and ࢼ

  1 1 1[ ] ,T T  β M R M M yR   (6) 

     2 11
.

T

n
   y Mβ R y Mβ   (7) 

Plugging these formulas (ࢼ෡ and ߪଶ෢ are functions of	 ࣓ as 
ܴ௜௝ depends on	 ࣓) into Eqn. (5) yields (constants dropped) 

      2arg min log log arg min .n L  
ω ω

ω R   (8) 

By numerically solving Eqn. (8), one can find	 ෝ࣓ . Then ࢼ෡ and 
 ଶ෢  can be obtained via Eqn. (6) and Eqn. (7). Once theߪ
hyperparameters are estimated, the GP prediction for	  ሺ࢞଴ሻ andݕ
the associated mean squared error (MSE) can be calculated with 
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where ࢃ ൌ ሺ࢞଴ሻ࢓ െିࡾ்ࡹଵ࢘ሺ࢞଴ሻ  and ࢘ሺ࢞଴ሻ  is an ݊ൈ1 
vector whose ݅௧௛ element is	 ,ሺ࢞௜ݎ ࢞଴ሻ. Since in this work we 
use the GP model only for interpolation, reversion to the mean is 
of no concern. Hence, we use a constant prior mean ݉ሺ࢞ሻ ൌ 1. 

The heart of fitting a GP model lies in efficient optimization 
of ܮ  in Eqn. (8). This is especially challenging for problems 
with high dimensionality, i.e., large number of input variables. It 
has been shown [22-24] that ܮ usually has a complex profile 
with multiple local optima. Previous works have used gradient-
based techniques where, to ensure global optimality, the 
optimization is run multiple times from different starting points. 
The downside of using such an approach is that as the problem 
dimensionality increases, the number of different starting points 
must be increased in proportion to the volume of the search space 
to ensure global optimality of the solution. This issue is 
exacerbated as the number of training samples increases because 
the computational cost of evaluating ିࡾଵ  in Eqn. (7) and 
subsequently ܮ and the entire optimization process increases. 

2.2 New Two-stage Parameter Estimation Technique 
Having in mind that the optimization efficiency for 

determining GP hyperparameters can deteriorate greatly due to 
the drastic increase of the required number of optimization runs 
as the dimensionality of ࣓  escalates, we now detail our 
approach to this issue via a two-stage parameter estimation 
technique. The ߱௜’s in Eqn. (3) can take any real number in 
ሺെ∞,∞ሻ, but previous research [24, 25] has shown that for most 
GP models ߱௜ ∈ ሾെ10, 10ሿ. Thus, the ݍ  initial points of the 
gradient-based optimization process may be chosen via a space-
filling algorithm (e.g., optimal Latin hypercube sampling [26]) 
in the ሾെ10, 10ሿௗ hypercube. Our essential idea is to use the 
smoothing functionality of the so-called nugget parameter, ߜ, to 
shrink this search space and thus require a smaller ݍ. 

The nugget parameter is usually a very small number, e.g., 
10ି଼ , that was originally proposed to address ሺ݅ሻ  noisy 

observations and/or ሺ݅݅ሻ  the potential numerical difficulty in 
inverting the covariance matrix, ࡾ. Case ሺ݅݅ሻ usually happens 
when the training dataset is dense (i.e., ݊  is large). In both 
cases, ࡾ in all the equations in Section 2.1 is replaced with 
 ,  R R I   (11) 

where ࡵ  is the ݊ൈ݊  identity matrix. In case ሺ݅ሻ ߜ ,  is 
generally set (or estimated) to be the variance of the Gaussian 
noise [7, 10]. In case ሺ݅݅ሻ ߜ ,  is used only if ࡾ  is ill-
conditioned. A typical formula for ߜ is 

 if
,

0 otherwise
th s s the e e e


 

 


  (12) 

where ݁௦  is the smallest eigenvalue of ࡾ , and ݁௧௛  is the 
smallest eigenvalue that ࢾࡾ can take to avoid numerical errors 
(݁௧௛ depends on machine precision and generally ݁௧௛~10ି଼). 

Our use of the nugget parameter is based on an entirely 
different reason. Our studies indicate that choosing a very large 
value for ݁௧௛  such as 10ିଵ  smooths out most of the local 
optima in the profile of ܮ while slightly shifting the location of 
the global optimum. As this constraint is slightly loosened (e.g., 
݁௧௛ ൌ 10ିଶ), the location of the global optimum for ࣓ in Eqn. 
(8) closes on to that of the true global optimum (when no or a 
very small ߜ is used). We use these observations to estimate the 
location of the true global optimum as follows: 

 
Step ૚ : Bound the search space to ሾܽ, ܾሿௗ  and find 

optimal solution ࣓௦  by solving the optimization problem in 
Eqn. (8) a few times (e.g., 3 or 5 times) while setting ݁௧௛ to 
a large value (e.g., 10ିଷ) in Eqn. (12). 

Step ૛: Refine the lower (ࡸ) and upper bound (ࢁ) of the 
search space along each direction via ࣓௦ as: 

 For	 ݅ ൌ 1: ݀  
  if	 ࣓௦ሺ݅ሻ ൌൌ ܽ  
ሺ݅ሻࡸ    ൌ െ10  
ሺ݅ሻࢁ    ൌ 0  
  else	 if	 ࣓௦ሺ݅ሻ ൌൌ ܾ  
ሺ݅ሻࡸ    ൌ 0  
ሺ݅ሻࢁ    ൌ 3  
  else  
ሺ݅ሻࡸ    ൌ ࣓௦ሺ݅ሻ െ 1  
ሺ݅ሻࢁ    ൌ ࣓௦ሺ݅ሻ ൅ 1  
 end  

Once the range is estimated, Eqn. (8) is solved again but 
with a very small ݁௧௛ to find the true global optimum. Having 
the search space shrunk, one will need to solve Eqn. (8) only a 
few times (each time starting from a different point) rather than 
a lot more times, and the reduction factor of the number of the 
times is typically that of the search space volume. Regarding the 
“for loop” in Step ૛ we note that: 

1. If including ݔ௜ in the GP model does not increase its 
predictive power (i.e., ݕሺ࢞ሻ  is invariant regarding ݔ௜ ), the 
global optimum along dimension ݅ will be located at the lower 
bound of the initial search space (i.e., ࣓௦ሺ݅ሻ ൌൌ ܽ) in Stage ૚. 
In this case, ࡸሺ݅ሻ in Stage 2 is set to െ10 to allow the GP 
emulator render ݔ௜ as unimportant as it needs to be.  
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2. If ݕሺ࢞ሻ is rough (i.e., changes rapidly) along the ݅௧௛ 
dimension, the global optimum in that direction will be located 
at the upper bound of the initial search space (i.e., ࣓௦ሺ݅ሻ ൌൌ ܾ) 
in Stage ૛. In this case, ࢁሺ݅ሻ in Stage 2 is set to ܾ ൅ 1 to 
allow the GP emulator become as rough as required along ݔ௜. 
Here, as opposed to the above, the range is increased only by a 
unit because ࣓ appears as the exponent in Eqn. (3). 

3. The last two conditions in the loop are rather 
conservative: While significantly reducing the range along each 
dimension from ሾെ10, 10ሿ, we have made sure the range is still 
wide enough to account for the slight shift in the location of the 
global solution (see Figure 1 (a) as an example). 

4. Based on our empirical studies, setting ሾܽ, ܾሿ ൌ
ሾെ3, 2ሿ works very well for a wide range of problems, but most 
parameters in the method including ሾܽ, ܾሿ can be adjusted as 
needed, and the mechanism of the algorithm ensures the search 
result has low sensitivity to the choice of ሾܽ, ܾሿ. 

The above procedure is illustrated in Figure 1 via a 1ܦ 
function with 11 training inputs located at െ1,െ0.8, … , 0.8, 1 
 ( ) sin(5 ) log( 1.1).y x x x x     (13) 

As can be observed in Figure 1 (a) and (b), the profile of ܮ 
is complex and if one were to solve Eqn. (8) only once, a local 
optimum might be incorrectly chosen for ෝ߱ . It is evident, 
however, that imposing an overly restrictive constraint on ݁௦ 
results in a smooth profile where the global optimum can be 
found much more easily (the red curves in Figure 1 (a) and (b)).  

 

 
Figure 1. (a) The profile of ܮ as a function of ߱ for three  

different values of ݁௧௛. (b) Same figure as (a) but over a 
smaller range for ߱. (c) The exact function and the fitted GP 

model to the training points. 
 

We note that the described procedure is not only general, but 
most advantageous for high-dimensional ones where one cannot 
afford solving Eqn. (8) many times. In our design problem to be 
demonstrated in Section 4, five GP models are fitted; each with 
460 samples in 46 dimensions. Using the technique detailed in 
this section, we are able to fit accurate models in less than an 
hour on an ordinary desktop (Intel® Core™ i7-6700 at 3.40GHz 
with 4  cores). As to be detailed in Sections 4.2 and 4.5, the 
accuracy of the fitted models is quite high. 
 
3 COLLABORATIVE OPTIMIZATION METHODS 
 
3.1 Original Collaborative Optimization Method 

Collaborative optimization (CO) method is an MDO method 
initially developed for large-scale distributed systems [1] and 
commonly applied to non-hierarchical ones. To understand the 
CO method, we first formulate a general MDO problem as 
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  (14) 

where notations are adopted from [27] and listed in Table 1. Note 
that this general problem (14) is slightly simplified compared 
with that in [27] because the purpose here is for explaining only 
the CO architecture. To use the CO method, the original problem 
Eqn. (14) is decomposed into ܰ  disciplinary sub-problems 
with a system-level problem created to coordinate the 
optimization processes across all the sub-problems. The general 
architecture of the original CO method is illustrated in Figure 2. 
The purpose of having copies (denoted by hats) of variables is to 
facilitate the description of the interdisciplinary coordination 
process. Readers may refer to [27] for more details. 
 

 
Figure 2. CO formulation for solving MDO problems 

 
Table 1. Nomenclature for MDO problems and CO formulations 

Variable Description 
ܰ Number of disciplines 
 ሺ∙ሻ Global objective functionܨ

 ଴ሺ∙ሻࢉ
Constraint functions analyzed by the system 
problem solver 

 ݅ ௜ሺ∙ሻ Local constraint functions in Disciplineࢉ
 ௖ሺ∙ሻ Consistency constraint functionsࢉ

࢞଴ 
Shared design variables across at least two 
different disciplines 

࢞௜ Local design variables of Discipline ݅ 

࢟௜ሺ࢞଴, ࢞௜, ࢟௝ஷ௜ሻ 
Analysis responses (functions of local design 
variables, shared design variables, and/or 
responses from other disciplines) of Discipline ݅ 

࢟
ൌ ሾ࢟ଵ

், … , ࢟ே
் ሿ் 

Collection of responses from all the discipline 
analyses 

ෝ࢞଴௜ 
Copy of shared design variables stored in 
Discipline ݅ 

ෝ࢞௜ Copy of local design variables of Discipline ݅ 
ෝ࢟

ൌ ሾෝ࢟ଵ
், … , ෝ࢟ே

் ሿ் 
Copy of responses from all the discipline analyses 
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In the CO architecture shown in Figure 2, the system 
optimization problem is 
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The discipline ݅ sub-problem is 
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where ܬ௜ሺෝ࢞଴௜, ࢞௜, ࢟௜ሺෝ࢞଴௜, ࢞௜, ෝ࢟௝ஷ௜ሻሻ has the same form as ܬ௜
∗ in 

Eqn. (15) but different independent variables. According to 
these formulations, the system optimization problem is 
responsible for minimizing the global objective function and 
ensuring the consistency between disciplinary design variables 
(ෝ࢞଴௜, ࢞௜) and analysis responses (࢟௜) by coming up with a set of 
common targets (࢞଴௜, ෝ࢞௜, and ෝ࢟௜) for them. Meanwhile, the sub-
problem solvers minimize the inconsistency between the set of 
targets (࢞଴௜, ෝ࢞௜, and ෝ࢟௜) from the system solver and the local 
design variables and responses (ෝ࢞଴௜, ࢞௜, and ࢟௜).  

The original CO method has the advantage of fully 
separating the discipline analyses and manifests good 
performance in some applications such as an aerospace vehicle 
design problem [1]. However, several numerical problems are 
faced when it is coupled with gradient-based optimization 
algorithms [2, 28]. Five major problems are summarized in [29]: 

1. The system problem constraints ܬ௜
∗ are generally non-

smooth functions and therefore non-differentiable. 
2. The Jacobian for the system problem constraints is 

singular at the optimum. 
3. Several local minima may exist in sub-problems for 

each set of target values assigned by the system problem solver. 
4. The Lagrange multipliers in the disciplinary sub-

problems are zero or converge to zero at optimum. 
5. The system problem has no information about the active 

constraints in the sub-problems. 
Attempts are made to modify the CO method to address 

these difficulties. Two major improved versions, modified 
collaborative optimization (MCO) and enhanced collaborative 
optimization (ECO) are introduced in subsections 3.2 and 3.3. 
 
3.2 Modified Collaborative Optimization Method 

In the modified collaborative optimization (MCO) [2], the 
formulations of the system problem and disciplinary sub-
problems are slightly modified compared with the original CO. 
The system optimization problem is changed to 
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where ߙ  is a positive penalty parameter and ܬ௜
∗ ൌ ‖ෝ࢞଴௜ െ
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݅ sub-problem is modified as 
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where ܬ௜ሺෝ࢞଴௜, ࢞௜, ࢟௜ሺෝ࢞଴௜, ࢞௜, ෝ࢟௝ஷ௜ሻሻ has the same form as ܬ௜
∗ in 

Eqn. (17) but different independent variables. 
MCO overcomes at least three of the five difficulties 

associated with the original CO listed in the previous subsection. 
Issues 2 and 4 are addressed by using L1-norm instead of L2-
norm in the sub-problem objective functions and integrating the 
equality constraints in the system problem as penalty terms into 
the objective function. Issue 1 is tackled by solving a sequence 
of the so-called perturbed MCO problems. However, these 
perturbed problems bring about the ill-conditioning issue due to 
the use of barrier functions and an adequate update rule for the 
barrier parameter is not provided in literature. Also considering 
that the complexity of solving the perturbed problems is 
impractical for industrial applications, we adopt a simplified 
MCO method where Equations (17) and (18) are directly 
solved, and test it with the MDO problem in Section 4. 

 
3.3 Enhanced Collaborative Optimization Method 

The most recent version of CO is the enhanced collaborative 
optimization (ECO) [4, 5] method which has largely different 
formulation from that of the original CO (see Figure 3). 

The system optimization problem for ECO is 
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The discipline ݅ sub-problem is 
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where in addition to the notations listed in Table 1, ܨ෨଴ሺ∙ሻ is a 
quadratic model of the global objective function, ࢉ෤௝ሺ∙ሻ  is the 
linearized model of the constraint function ࢉ௝ሺ∙ሻ from discipline 
݆ (݆ ് ݅), ௝࢙ is the vector of slack variables for the linearized 
constraint function ࢉ෤௝ሺ∙ሻ, and ݓ஼௜ and ݓி௜ are weights for the 
consistency and slack variable penalties, respectively. To ensure 
optimality, ݓி௜  must be larger than the largest Lagrange 
multiplier for the discipline ݅ sub-problem. ݓ஼௜ serve to guide 
the optimization toward a consistent solution [27]. In principle, 
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each ݓ஼௜  must be driven to infinity to enforce exact 
consistency, but in practice finite values are used to balance 
consistency and exploration of a larger design space [4]. 

 

 
Figure 3. ECO formulation for solving MDO problems 

 
The formulation of ECO is radically different from that of 

the original CO and theoretically eliminates almost all the five 
major problems introduced in Section 3.1. A distinct feature of 
ECO is that the roles of the system problem and the disciplinary 
sub-problems are inverted compared with other versions of CO; 
the system problem only handles the variables and responses 
consistency between different disciplinary groups while the sub-
problems minimize the global objective function. Another 
feature of ECO lies in the introduction of linear models of 
nonlocal constraints (represented by ࢉ෤௝ሺ∙ሻ (݆ ് ݅) in discipline 
݅  sub-problem) and quadratic models of the global objective 
function (represented by ܨ෨଴ሺ∙ሻ  in each subsystem-level 
problem). In this way, not only issues 1, 2 and 4 listed in Section 
3.1 are addressed, but issues 3 and 5 are also alleviated since 
෤௝ሺ∙ሻࢉ  (݆ ് ݅ ) and ܨ෨଴ሺ∙ሻ  in discipline ݅  respectively increase 
each discipline’s “awareness” of the constraints in other 
disciplines and enhance, if not guarantee, the uniqueness of the 
solutions to subsystem-level problems. Although such features 
necessitate more function evaluations and some interdisciplinary 
data communication (incurred by building linear and quadratic 
approximations of nonlocal constraints and objectives), they 
preserve a high level of interdisciplinary analysis independence 
and provide ECO with a better convergence rate. 

It should be noted that due to the nature of our application 
problem, in this paper the ECO method is applied slightly 
differently. First, when the system problem and disciplinary sub-
problems are solved, gradient-based algorithms are used to 
search for only one local optimum rather than the global one with 
the starting point being the local optimum found at the previous 
iteration. The reason is that all the disciplinary sub-problems 
have large design space (caused by the large number of design 
variables), hence searching for the global optimum is costly. 
Second, as a by-product of the above modification, the slack 
variables in each discipline are not effective in improving the 
performance of the method. Hence, all the slack variables are 
dropped, which is equivalent to setting the penalty parameters 
for slack variables to infinity. Finally, in addition to the original 
ECO method, a simplified ECO method where the linearized 

constraints ࢉ෤௝ሺ∙ሻ (݆ ് ݅) are dropped in every discipline ݅ sub-
problem is proposed for ease and efficiency of implementation. 
Both original and simplified ECO methods are applied to the 
vehicle suspension MDO problem in Section 4 where insights 
are drawn from the comparison between the two methods. 
 
4 APPLICATION TO A VEHICLE SUSPENSION 

PARAMETER DESIGN PROBLEM 
 
4.1 General Problem Description 

The enhanced GP metamodeling and different versions of 
the CO method introduced in Sections 2 and 3 are applied to a 
suspension parameter design problem for vehicle dynamics. The 
multi-body dynamic vehicle system used in the problem is 
developed from an Altair® MotionView® sample vehicle model. 
It contains a front MacPherson suspension and a rear strut 
suspension subsystem. Mechanical property parameters such as 
stiffness and damping coefficients of several components of the 
suspensions are selected as design variables. Figure 4 illustrates 
the structure of the suspension in a vehicle body. Figure 5 and 
Figure 6 show the components of the front and rear suspensions. 
All the components and associated design variables (of which 
there are 46  in total) are listed in Table 3. The goal of this 
design problem is to optimize the vehicle durability while 
improving its riding comfort with at least 10% improvement of 
the performance indicators. Therefore, three multi-body 
dynamics simulation events (rough road, brake and double-lane 
change) that represent vehicle handling conditions are 
conducted, and five key indicator responses (listed in Table 2 and 
illustrated in Figure 4) of the vehicle durability and riding 
comfort are extracted from the simulations. These extracted 
response values are their maximum variation amplitudes over a 
certain time period during the simulations. For simplicity, we 
will refer to them by their variable names, ଵ݂ሺ࢞଴ሻ  through 
ହ݂ሺ࢞଴ሻ, defined in Table 2. Notice that all five responses are 

functions of a single set of shared variables ࢞଴, which stands for 
the complete set of 46 design variables. Since all the dynamics 
simulations use the same vehicle suspension model, all response 
analyses and hence disciplines (to be defined shortly) share the 
same set of design variables. 

 

 
Figure 4. Vehicle body and suspension model with five 

dynamical responses 
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Figure 5. Front suspension design components (numbers in 

accordance with Table 2) 
 

 
Figure 6. Rear suspension design components (numbers in 

accordance with Table 2) 
 

Table 3. All the suspension components and design variables 

Index Component name 
Number of 

design 
variable(s) 

Design 
variable 
name(s) 

1 Front coil spring 1 ݔଵ 
2 Front damper 5 ݔଶ to ݔ଺ 
3 Front bump stopper 1 ݔ଻ 
4 Front stabilizer bar 1 ଼ݔ 

5 
Front lower control arm 

front bushing 
 ଵସݔ ଽ toݔ 6

6 
Front lower control arm 

rear bushing 
 ଶ଴ݔ ଵହ toݔ 6

7 Rear coil spring 1 ݔଶଵ 
8 Rear damper 5 ݔଶଶ to ݔଶ଺ 
9 Rear bump stopper 1 ݔଶ଻ 
10 Rear stabilizer bar 1 ݔଶ଼ 
11 Rear suspension front link 6 ݔଶଽ to ݔଷସ 
12 Rear suspension rear link 6 ݔଷହ to ݔସ଴ 
13 Trailing arm bushing 6 ݔସଵ to ݔସ଺ 

The formal MDO formulation for the design problem 
described above is  
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  (21) 

where the ranges of all design variables, ࢞଴, are normalized to 
the unit interval ሾ0, 1ሿ and the values of all response variables, 
ଵ݂ሺ࢞଴ሻ through ହ݂ሺ࢞଴ሻ, are normalized against their baseline 

values so that the baseline design is ࢞଴,ୠୟୱୣ ൌ 0.5  and 

௜݂൫࢞଴,ୠୟୱୣ൯ ൌ 1.0  for ݅ ൌ 1,2, … ,5 . Even though there is no 
clear distinction of disciplines, for the purpose of this study, the 
“disciplinary” structure of this MDO problem is artificially 
created as shown in Figure 7. 
 

 
Figure 7. Multidisciplinary structure of the vehicle suspension 

MDO problem 
 

The disciplinary assignment is justified as follows. First, per 
the distinction of the three simulation events, the two responses 
that evaluate double lane change performance, ସ݂ሺ࢞0ሻ  and 
ହ݂ሺ࢞0ሻ, are grouped under Discipline 2. Next, we look at the only 

two vehicle durability indictors, ଵ݂ሺ࢞0ሻ and ଶ݂ሺ࢞0ሻ, and choose 
the former as the global objective because it is considered more 
critical. Additionally, considering that ଵ݂ሺ࢞0ሻ  and ଶ݂ሺ࢞0ሻ 
compete with each other, to test the CO methods’ ability to 
handle the competition between minimizing the global objective 
and satisfying the constraints in disciplinary sub-problems, we 
separate ଶ݂ሺ࢞0ሻ from ଵ݂ሺ࢞0ሻ to induce more competition and 
group it with ଷ݂ሺ࢞0ሻ (an indicator of brake performance) under 
Discipline 1. Overall, we have a balanced number of constraints 
in each disciplinary sub-problem. As to be seen in Section 4.4, 
the above “artificial” disciplinary formulation allows us to 
differentiate the performance of different CO methods. 

Table 2. All the simulation events and corresponding response variables 
Simulation event Response name Response variable name* 

Rough road (by four-post test) 
Front left suspension tower vertical load ଵ݂ሺ࢞଴ሻ 
Rear left suspension tower vertical load ଶ݂ሺ࢞଴ሻ 

Brake Vehicle center of gravity (CG) pitch angle ଷ݂ሺ࢞଴ሻ 

ISO double lane change 
Vehicle CG roll angular acceleration ସ݂ሺ࢞଴ሻ 
Vehicle CG yaw angular acceleration ହ݂ሺ࢞଴ሻ 

* ࢞଴ stands for the vector of all the 46 design variables. 
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4.2 Gaussian Process (GP) Metamodeling for Vehicle 
Dynamical Responses 
Since the functions ଵ݂ሺ࢞0ሻ through ହ݂ሺ࢞0ሻ are expensive 

to evaluate via the MotionView® vehicle simulation model, 
metamodels are fitted to replace them in the optimization 
process. The enhanced GP modeling method introduced in 
Section 2.2 is applied to fit GP models for the five functions, 
with 460 DoE (Design of Experiment) sample points generated 
by a space-filling optimal Latin hypercube sampling algorithm 
[26] for 46 variables. The two surface plots of the fitted GP 
models shown in Figures 8 and 9 showcase relatively high and 
low nonlinearities of the functions. In plotting the two response 
surfaces, the design variables other than the two plotted ones are 
set to baseline values, i.e., 0.5 under normalized ranges.  

 

 
Figure 8. Response 1 (front left suspension tower vertical load) 

as a function of ݔସ (front damper ݌ଶ parameter) and ݔଷ 
(front damper ܥଵ parameter) 

 

 
Figure 9. Response 2 (rear left suspension tower vertical load) 
as a function of ݔଶ଻ (rear bump stopper clearance) and ݔଶଷ 

(rear damper ܥଵ parameter) 
 
The advantage of using the enhanced GP modeling method 

is justified in two aspects. First, we show that the traditional 
optimization method without the two-stage parameter estimation 
technique (the key part of the enhanced method) has much lower 
efficiency in finding the globally optimal hyperparamters ࣓ of 
GP models than the enhanced method. As introduced in Section 
2.1, the optimal ࣓ minmizes the objective function ܮ (Eqn. 
(8)), and multiple optimization runs starting from different initial 

points have to be carried out to search for the global optimum. 
We compare the efficiency of the traditional and the enhanced 
GP modeling methods by using them to fit GP models for ଵ݂ሺ࢞଴ሻ 
and recording the smallest objective function values achieved 
within 12 optimization runs. The default search range for each 
߱௜  is ሾെ5, 5ሿ  for both methods, but the enhanced method 
carries out six preliminary optimization runs to refine the bounds 
and these six runs are counted in the total number. Sobol 
sequence [30] is used to generate space-filling initial points for 
both methods, and the whole test is repeated 10 times to assess 
the statistical performance. The results are plotted in Figure 10, 
where the smallest objective function values achieved by the 
enhanced method are consistently much smaller (better) than 
those by the traditional method. 

 

  
Figure 10. Comparison of the achieved smallest objective 

function values within 12 optimization runs using the 
traditional and the enhanced GP modeling methods 

 
Second, to justify the use of GP models rather than other 

types of metamodels, a common metamodeling method, 
polynomial regression, is also tested to fit metamodels to the 
same datasets. As listed in Table 4, R-squared values based on 
10-fold cross-validation (CV) are used to assess the accuracy of 
the two types of models. According to the R-squared values, GP 
models have overall higher accuracy than the polynomial models 
although the former has slightly lower accuracy than the latter 
for ସ݂ሺ࢞0ሻ  and ହ݂ሺ࢞0ሻ . This indicates the true functions of 
ସ݂ሺ࢞0ሻ  and ହ݂ሺ࢞0ሻ  have close-to-polynomial shapes, but the 

overall high R-squared values of the GP models demonstrate 
their robustness against the variation of the true function forms. 
In addition, GP models can provide uncertainty information at 
prediction locations which is useful for further studies on the 
problem such as additional sampling, while polynomial ones 
cannot. Therefore, GP models are overall the better choice for 
the metamodels in this design problem. 

 
Table 4. Accuracy comparison of polynomial and GP models by 

10-fold cross-validation R-squared values 
 ଵ݂ሺ࢞଴ሻ ଶ݂ሺ࢞଴ሻ ଷ݂ሺ࢞଴ሻ ସ݂ሺ࢞଴ሻ ହ݂ሺ࢞଴ሻ 

Polynomial model 0.887 0.941 0.987 0.979 0.991 
GP model 0.966 0.983 0.997 0.928 0.986 
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4.3 CO Formulations for the MDO problem 
Based on the formulation of the MDO problem (21) and the 

multidisciplinary structure (Figure 7), the different versions of 
the CO method discussed in Section 3 are formulated for the 
MDO problem as shown in Figure 11 through Figure 14. There 
are several points that deserve notice in these formulations. 
 

 
Figure 11. Original CO formulation for the MDO problem 

 

 
Figure 12. Simplified MCO formulation for the MDO problem 

ߙ) ൌ 0.01) 
 

1. For all the formulations, ࢞଴  is the 46  design 
variables shared by all the disciplines. ෝ࢞଴ଵ and ෝ࢞଴ଶ are copies 
of these variables in the two disciplinary problems. Analysis 
functions ଵ݂ሺ࢞0ሻ through ହ݂ሺ࢞0ሻ are GP models fitted for the 
corresponding simulation models. 

2. In addition to the original ECO (Figure 13), a simplified 
ECO formulation (Figure 14) is developed for comparison with 
the original one, as discussed at the end of Section 3.3. 

3. In Figure 13, the response functions with tildes ( ሚ݂ଶሺ࢞0ሻ 
through ሚ݂

ହሺ࢞଴ሻ ) are linear models of nonlocal constraints 
corresponding to the ࢉ෤௝ሺ∙ሻ  ( ݆ ് ݅ ) in Section 3.3. Our GP 
modeling code has a nice feature to predict both the mean 
response and the gradient for any input location; therefore, the 
linear models ሚ݂ଶሺ࢞଴ሻ through ሚ݂ହሺ࢞଴ሻ can be easily built with 

the output of the GP models. If other metamodels are used which 
don’t offer the gradient prediction, numerical methods such as 
finite differentiation may be used to build the linear models and 
no new metamodels need to be fitted. 

4. The formulations of simplified MCO, original ECO and 
simplified ECO involve some penalty parameters. The chosen 
values for the parameters are noted in the figure captions. 
 

 
Figure 13. Original ECO formulation for the MDO problem 

ଵߙ) ൌ ଶߙ ൌ 0.1) 
 

 
Figure 14. Simplified ECO formulation for the MDO problem 

ଵߙ) ൌ ଶߙ ൌ 100) 
 

4.4 Optimization Results and Comparison 
All the metamodel-based MDO problems with different 

versions of the CO method are solved in MATLAB® 
programming software. The all-at-once (AAO) method is also 
used to directly solve the MDO problem (21) and its solution 
serves as a benchmark for those of the CO methods [27]. The 
summary of optimization results is provided in Table 5. Among 
all different versions of the CO method studied, only the original 
ECO can obtain an optimal solution comparable with that 
obtained by the AAO method. The simplified ECO achieves a 
solution that reduces the global objective function moderately 
and roughly satisfies the 10% reduction constraints on ଶ݂ሺ࢞଴ሻ 

Table 5. Optimization results of AAO and different versions of CO method 

Method ଵ݂ሺ࢞଴
∗ሻ 

(objective) ଶ݂ሺ࢞଴
∗ሻ ଷ݂ሺ࢞଴

∗ሻ ସ݂ሺ࢞଴
∗ሻ ହ݂ሺ࢞଴

∗ሻ Convergence 
Number of system-wide 

iterations 
AAO 0.739 0.900 0.900 0.720 0.900 Yes NA 

Original CO 1.150 0.900 0.900 0.894 0.900 Yes 29 
Simplified MCO 0.333 1.166 1.122 1.433 1.144 No 1000 
Simplified ECO 0.823 0.900 0.901 0.776 0.901 No 1000 
Original ECO 0.751 0.900 0.900 0.747 0.900 Yes 30 
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through ହ݂ሺ࢞଴ሻ, but not all the constraints are strictly satisfied 
even after a large number (1000) of system-wide iterations. The 
remaining two methods, original CO and simplified MCO, either 
fail to effectively reduce the global objective function or cannot 
satisfy the constraints from all the disciplinary groups. 

The original CO method converges within a small number 
of system-wide iterations with all the constraints satisfied, but 
the global objective function is increased rather than decreased 
compared with the baseline design. This is reasonable because in 
its formulation shown in Figure 11, the system problem imposes 
tight equality constraints on interdisciplinary variable 
consistency, allowing little feasible space where an optimum is 
searched for in the system problem. 

In the simplified MCO method, a wide range of values for 
the penalty parameter ߙ are tried, but none of them work well. 
The best performance of MCO is achieved when ߙ ൌ 0.01. The 
drastic breakdown of the simplified MCO method is not of much 
surprise. Even though the interior-point optimization algorithm 
in MATLAB® is used to deal with the non-smoothness of the 
L1-norm consistency terms (Figure 12), the large number of 
design variables (listed in Table 3) shared by all disciplinary 
problems exacerbates the non-smoothness problem and may 
have neutralized this workaround. Therefore, the simplification 
of the original MCO method does not work for the MDO 
problem in this paper, and probably will not work for other 
similar engineering applications with large numbers of variables. 

Of the most interest are the results of the simplified and the 
original ECO methods. Although it is obvious in Table 5 that the 
original ECO works much better than the simplified one in terms 
of both the quality of the final optimal solution and the number 
of system-wide iterations, the final solution obtained by the 
simplified ECO is very close to convergence and hence may be 
worthwhile. That is, only the responses ଷ݂ሺ࢞0∗ሻ  and ହ݂ሺ࢞0∗ሻ 
exceed the constraint target (0.9) by around 1% while the other 
constraints are satisfied, and the global objective function 
ଵ݂ሺ࢞0∗ሻ is reduced by a reasonable amount below the baseline 

value (1.0). In Section 3.3, it is shown that simplified ECO has 
an organizational advantage over the original ECO in that the 
former does not require interdisciplinary data exchange to 
linearize the nonlocal constraints. Considering this fact, a closer 
look at the detailed convergence behaviors of the two methods is 
taken to weigh the actual performance loss of the simplified ECO 
against the gain of its organizational advantage. 

The convergence histories of the original and simplified 
ECO methods are shown in Figure 15 through Figure 17. It can 
be seen in Figure 15 that the conflict between reducing the global 
objective function ଵ݂ሺ࢞଴ሻ  and satisfying the constraints for 
ଶ݂ሺ࢞଴ሻ, ଷ݂ሺ࢞଴ሻ and ହ݂ሺ࢞଴ሻ rapidly reaches a nearly feasible 

balance within about three iterations. Under this balance, the 
global objective can continue to decrease until all the 
convergence criteria are met. In contrast to this, the convergence 
behavior of the simplified ECO method has a different pattern 
shown in Figure 16 and Figure 17. Within the first 15 
iterations, the same rough balance between the functions ଵ݂ሺ࢞଴ሻ, 
ଶ݂ሺ࢞଴ሻ, ଷ݂ሺ࢞଴ሻ and ହ݂ሺ࢞଴ሻ as in Figure 15 is established, but 

with a much larger sacrifice of the ଵ݂ሺ࢞଴ሻ value. Around this 

trade-off space, the optimization then proceeds along a path on 
which ଵ݂ሺ࢞଴ሻ  continuously decreases, but the same 
convergence criteria as in the original ECO case cannot be 
strictly satisfied even after 1000  iterations (Figure 17). 
Although slightly loosened convergence criteria can be met 
within the 1000 iterations, the achieved global objective value 
ଵ݂ሺ࢞0∗ሻ is still much worse than that of the original ECO. 

 

 
Figure 15. Convergence history of the original ECO method 

(convergent in 30 iterations) 
 

 
Figure 16. Convergence history of the simplified ECO method 

(the first 30 iterations, not yet convergent) 
 

 
Figure 17. Convergence history of the simplified ECO method. 

The convergence is not achieved within the allowed number 
(1000) of iterations, but the final iterate is almost convergent. 
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Based on the above observations, a clearer distinction of 
optimization performance between the original and the 
simplified ECO methods is identified, the mechanism of which 
can be explained by the difference between their formulations. 
The only difference between both formulations (Figure 13 and 
Figure 14) is the existence or nonexistence of the linear models 
of nonlocal constraints. In the original ECO method, due to the 
linear constraints, every disciplinary sub-problem has more 
“knowledge” about the constraint condition in the other 
discipline. Although the “knowledge” is limited to only the linear 
term in the context of Taylor expansion series, it is sufficient to 
efficiently guide the local solutions towards globally feasible 
design solutions, as is observed in Figure 15. Without the 
linearized constraints as in the simplified ECO method, the only 
way for the disciplinary sub-problems to “know” the constraint 
condition in the other discipline is via the penalty term in the sub-
problem objective functions. However, the information passed 
by this penalty term is much inefficient at communicating the 
constraint condition of the other disciplines; hence the global 
feasibility is less strictly achieved as shown in Figure 17, where 
the same convergence criteria as used in the original ECO 
formulation cannot be met within 1000 iterations. Also, a much 
larger penalty parameter (100  as opposed to 0.1  in original 
ECO) has to be used to ensure sufficient global consistency and 
feasibility of the solution. This results in the expense of having 
to explore a much smaller feasible space and consequently a low-
quality solution compared with that obtained by the original 
ECO method. 

To sum up, among all different versions of the CO method 
tested, the simplified and the original ECO methods manifest 
noticeable performance advantages in solving the vehicle 
suspension parameter design problem. The choice between the 
two methods is a trade-off between ease of application and 
convergence performance. While the original ECO method can 
efficiently converge to a high-quality optimal solution, the linear 
models of nonlocal constraints required in each of the 
disciplinary sub-problems incur a high amount of 
interdisciplinary data exchange and extra function evaluations, 
which is undesirable or even prohibitive for applications to large-
scale MDO problems. The simplified ECO method doesn’t 
incorporate the linear models of nonlocal constraints, and 
therefore achieves complete independence between different 
discipline groups. This enables the parallelization of solving 
disciplinary sub-problems and is especially advantageous for 
large-scale MDO problems. The downside of the simplified ECO 
method, however, is worse convergence behavior and solution 
quality than that of the original ECO method. 
 

4.5 Verification of the Optimal Solutions 
To verify the accuracy of the GP models used to replace the 

expensive simulation models in this study, two optimal solutions 
obtained by the AAO and the original ECO methods are verified 
by calculating the true simulation responses at the corresponding 
optimal design points. The verification results are listed in Table 
6. In each of the two cases, the differences between the GP model 
prediction values and the true response values are mostly small, 
with the maximum error percentage being around 10%  for 
response function ସ݂ሺ࢞0ሻ. These results confirm the sufficient 
accuracy of the GP models used in this design problem. 
 
5 CONCLUSIONS 

Modern vehicle suspension design problems are faced with 
two major challenges: their large number of design variables and 
the proper choice of an MDO architecture. In this paper, an 
enhanced Gaussian process (GP) modeling method is developed 
and several versions of the collaborative optimization (CO) 
method are surveyed to address the two challenges. A vehicle 
suspension parameter design problem is solved to test the 
proposed GP modeling method and different versions of the CO 
method. The GP models are fitted efficiently and their high 
accuracy is verified. Among all the versions of the CO method, 
the most promising ones are the original and the simplified ECO 
methods, the pros and cons of which are a trade-off between ease 
of implementation and convergence performance. The original 
ECO method manifests superior convergence performance by 
efficiently achieving an optimal solution comparable to the one 
obtained by the all-at-once (AAO) method. The key contributors 
to such performance are the linear approximations of nonlocal 
constraints. However, these approximations also bring about 
expensive extra function evaluations and interdisciplinary data 
communication, which impairs the parallelization of solving 
disciplinary sub-problems and may become prohibitive for large-
scale MDO applications. In contrast, the simplified ECO method 
without the linearly approximated constraints does not come 
with these organizational downsides, but as a compromise, its 
convergence performance decreases and large penalty 
parameters must be applied to ensure a desired level of global 
consistency of the design solutions.  

This study produces two valuable outcomes for future 
vehicle suspension design problems and other engineering 
problems that face high-dimensionality and MDO challenges. 
One is that the proposed enhanced GP modeling method can be 
readily applied to any high-dimensional (e.g. more than 40) GP 
modeling task to save the time and computation cost while 
maintaining the desired level of model accuracy. The other is that 
insights drawn from the comparison between different versions 

Table 6. Verification of response function values at two optimal solutions 
 ଵ݂ሺ࢞଴

∗ሻ (objective) ଶ݂ሺ࢞଴
∗ሻ ଷ݂ሺ࢞଴

∗ሻ ସ݂ሺ࢞଴
∗ሻ ହ݂ሺ࢞଴

∗ሻ 

Solution 1 (AAO) 
Metamodel responses 0.739 0.900 0.900 0.720 0.900 

Verification result 0.780 0.894 0.905 0.830 0.914 

Solution 2 (ECO) 
Metamodel responses 0.751 0.900 0.900 0.747 0.900 

Verification result 0.783 0.897 0.905 0.824 0.913 



 12 Copyright © 2017 by ASME 

of the CO method provide guidance for future industrial 
applications of these methods. The original ECO method has the 
best optimization performance of all the versions of the CO 
method, and the simplified ECO method can be an alternative for 
practitioners who wish to trade a certain level of optimization 
performance for ease of implementation and independence of 
disciplinary analyses. 
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