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Building sensible processing-structure-property (PSP) links to gain fundamental insights
and understanding of materials behavior has been the focus of many works in computa-
tional materials science. Microstructure characterization and reconstruction (MCR), cou-
pled with machine learning techniques and materials modeling and simulation, is an
important component of discovering PSP relations and inverse material design in the era
of high-throughput computational materials science. In this article, we provide a compre-
hensive review of representative approaches for MCR and elaborate on their algorithmic
details, computational costs, and how they fit into the PSP mapping problems. Multiple cat-
egories of MCR methods relying on statistical functions (such as n-point correlation func-
tions), physical descriptors, spectral density function, texture synthesis, and supervised/
unsupervised learning are reviewed. As no MCR method is applicable to the analysis and
(inverse) design of all material systems, our goal is to provide the scientific community
with a close examination of the state-of-the-art techniques for MCR, as well as useful guid-
ance on which MCR method to choose and how to systematically apply it to a problem at
hand. We illustrate applications of MCR on materials modeling and building structure-
property relations via two examples: One on learning the materials law of a class of com-
posite microstructures, and the second on relating the permittivity and dielectric loss to a
structural parameter in nanodielectrics.
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1. Introduction

The heart of computational materials science lies in providing fundamental insights and understanding of materials
behavior and properties across different scales, which further enables cost-effective design of materials with targeted prop-
erties. The significance of this task is highlighted by the Materials Genome Initiative [1–4] and the emergence of computa-
tional tools and frameworks such as materials by design [5,6], microstructure sensitive design [7], and integrated
computational materials engineering (ICME) [8]. As a material’s morphology heavily affects its properties [9,10], the central
theme of these frameworks is on inverse materials design by elucidating the link between processing, structure, and proper-
ties (aka PSP links) [5,11]. The fact that such inverse mappings are not unique (see Fig. 1a), introduces both opportunities and
challenges for developing PSP mapping techniques.

Evidently, experimental (aka Edisonian or cause-effect [6,12]) analysis, design, and discovery of materials is costly and
time-consuming. This noticeably limits the technological and industrial sectors as they are heavily connected with material
systems and their growth and long-lasting success hinges on efficient development and deployment of superior materials
[1–3,6]. Such a strong connection between materials and industry’s progress, demands that new material systems consis-
tently demonstrate superior properties because significant difficulties and expenses are incurred when the materials of
an established technology must be altered to, e.g., address environmental concerns or meet industry or government speci-
fications. Materials design is additionally hampered by the fact that it must be, to some extent, compatible with existing pro-
cessing technologies.

The so-called high-throughput computational materials science [13] provides an appealing alternative to the expensive
experimental approach for building PSP links and materials design (see Fig. 1b). Here, the central concept is to first create a
massive database that stores microstructural characteristics and properties of materials and then intelligently interrogate
this dataset to gain insights and use those new insights to discover materials with desired properties. To this end, many
existing works apply predictive models including neural networks [14] or support vector machines [15] to material data-
bases for building PSP links and, subsequently, estimate the material properties where no data (either experimental or com-
putational) are available [16–20]. In the high-throughput fueled frameworks, it is highly desirable to quantitatively
characterize the microstructure to ðiÞ increase the predictive power of such models, and ðiiÞ achieve a deeper understanding
on how the microstructure, on the one hand, is formed by composition and processing history [21,22] and, on the other hand,
affects the material properties. Realizing that in most material systems the corresponding microstructure embodies some
degree of randomness (e.g., grain size distribution in crystals or particle dispersion in fibrous composites), it is evident that



Fig. 1. (a) Forward and inverse PSP links in materials science: Unlike the direct cause-effect links, the links in the goals-driven materials design are not one-
to-one. Such a feature in the indirect approach, while providing design flexibility, requires identification of the set of processes (structures) resulting in a
particular structure (property). For these reasons, the methods and computational tools used in the two approaches are different. In this illustrative figure, a
point in the process, structure, or property disk corresponds to a particular, respectively, processing procedure, microstructure morphology, and set of
properties. (b) Data-driven materials design: The massive amount of data on various material systems, built through application of experimental and
computational tools in theoretical and empirical sciences, has enabled high-throughput materials design.
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the characterization must, in general, be statistical. The characterized information, in turn, can be used to computationally
reconstruct new microstructures to augment the available imaging data or even guide future imaging experiments (e.g.,
to determine the required imaging scale and resolution).

Computational microstructure characterization and reconstruction (MCR) consists of statistical methods to ðiÞ quantita-
tively represent the microstructure (and its possible inherent randomness), and ðiiÞ build an ensemble of statistically equiv-
alent microstructure [23] samples. MCR allows one to systematically go beyond the limits where the empirical data are
available and build forward and inverse PSP links to find the processes (structures) that result in a particular structure (prop-
erty), see Fig. 1a.

In this article, we report on recent advances in MCR of random heterogeneous materials, an essential component in the
computational and data-driven paradigms of materials science. The focus is specifically on methods developed to investigate
the PSP links. In this context, while characterization refers to the statistical representation of a material’s morphology via a
(finite set of) characteristic function(s) and/or feature(s), reconstruction is the process of generating a (set of) microstruc-
ture(s) whose morphology embodies a (set of) prescribed characteristic(s). Characterization and reconstruction are comple-
mentary and, together, provide the means to delve deeply into the detailed morphological characteristics at the various
length scales of a material’s hierarchical structure through imaging data. According to [24], such data ‘‘offers considerably
more than merely the illustration of a material system; in fact, it contains quantitative structural and functional information.
This information is spatially distributed and often has a complex multidimensional nature”. MCR is of common use in:

� Predictive materials modeling [23,25–28], i.e., finding the materials law that describes the homogenized response of a
heterogeneous material (see Section 5.1 for an example).

� Design of material systems with targeted properties [29–33] (see Section 5.2 for an example).
� Transformation and preparation of experimental data for computer simulations [34,35]. Examples include building a rep-
resentative microstructure image from a set of small micrographs [36], reconstructing 3D structures from 2D images
[37,38], and recovering the original microstructure image using the results of X-ray diffraction experiments [39].

� Determination of feasibility and/or sufficiency of a given set of characteristic functions [40–42]. Quantifying the high-
dimensional morphology of a microstructure with parametric functions is particularly useful in that it, e.g., enables build-
ing PSP links or helps to identify materials with the same underlying randomness (see Section 3.1.1 and Fig. 3). However,
a given parametric function might not sufficiently characterize a microstructure or even necessarily correspond to a fea-
sible one. In such cases, a reconstruction algorithm can be used to determine the feasibility and/or sufficiency (see Sec-
tion 3.1 for more details).

� Microstructure-induced uncertainty quantification and propagation [23,43–46]: Microstructure randomness manifests
itself in probabilistic material properties and performance; necessitating the study of, e.g., mean and variability behavior
and, more importantly, rare events [47–49]. To enable such computational studies, one must reconstruct an ensemble of
microstructure samples (that capture the randomness), estimate their properties (e.g., via the finite element method,
FEM), and then proceed to build PSP links and conduct statistical analyses (such as sensitivity analysis [50], model cali-
bration and bias correction [45], and uncertainty quantification and propagation [33,43,46,51,52]).
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From a recent historical standpoint, statistical microstructure characterization can be traced back to the early works of
Debye and co-workers [53,54] and then Corson [55–58], where the scattering power for electromagnetic radiation (resulting
in the two-point correlation function) was used to characterize the inhomogeneities in porous media. Later, reconstructing
such media by level-cutting random fields (to realize the microstructures corresponding to the characterized information)
was proposed by Joshi [59] and then extended by Quiblier [60]. To address the shortcomings associated with the use of ran-
dom fields in reconstruction (detailed in Section 3.3), Hazlett [61] and then Rintoul and Torquato [62] used an optimization
approach based on simulated annealing. To enable the use of statistical functions other than the two-point correlation in
characterization, this optimization-based reconstruction scheme was subsequently generalized by Yeong and Torquato
[39,63] to the stochastic reconstruction (aka YT) method. Because the optimization process in the YT method is expensive
and the reconstruction quality heavily depends on, among other things, the choice of the statistical functions used in the
characterization, considerable research has been conducted to improve the YT method (detailed in Section 3.1.2.2). Due
to these and other shortcoming of the YT method (see Section 3.1.2), other approaches have been developed for efficient
MCR in different material systems. These approaches commonly use physical descriptors (especially for the analysis and
design of crystalline or particulate microstructures), supervised/unsupervised learning techniques (which are computationally
efficient and applicable to a wide range of materials), spectral methods (for modeling the microstructure as a realization of a
random field), and texture synthesis (for synthesizing a microstructure based on an exemplar). In Section 3, we elaborate on
the details of these approaches.

As described in Section 3, several methods have been developed for MCR and the optimal choice for a given problem
depends on the material system, properties of interest, the length scale, as well as a balance between accuracy and cost.
As none of these methods are applicable to all problems (see above and Section 5 for some examples), a researcher should
make an informed decision for his/her MCR task. To aid in this end, we review the prevailing methods, comment on their
advantages and disadvantages, and provide some examples and comparisons. In Section 2, we define the technical terms
used in the literature and throughout this manuscript. In Section 3 we describe various MCR methods and elaborate on their
algorithmic details, computational costs, and applicability. We compare the methods in Section 4 and provide two material
examples in Section 5. Conclusions are provided in Section 6.

2. Definition of technical terms

Several terms are frequently used in the computational MCR literature. Before diving into the technical descriptions in
Section 3, in this section we define these terms and provide the relevant mathematical equations.

Characterization: Statistical quantification of the morphology of a microstructure. The quantification needs to be statis-
tical to account for the (possible) inherent morphological randomness. Complete characterization is often very difficult, if not
impossible, and might not actually be necessary (see Section 5.1 for an example). Correlation functions (e.g., two-point cor-
relation function) and physical descriptors (e.g., volume fraction and average particle or grain size) are commonly used in
characterization.

Ensemble: A collection of samples that are statistically equivalent. The ensemble members might have different morpho-
logical (fine) details but are identical from a coarse-scale point of view and have similar effective properties [64]. Consider
the sample space S of all statistically equivalent microstructures where the individual members and their probability density
functions are represented by, respectively, a and pðaÞ. The ensemble average of the function qðx;aÞ at x over this sample
space equals [65]:
�qðxÞ ¼
Z
S
qðx;aÞpðaÞda; ð2-1Þ
q is, basically, a property or quantity of interest (such as the effective Young’s modulus) that depends on the microstructure
as well as some other parameters collectively denoted by x. An ensemble of statistically equivalent samples corresponds to,
for instance, a collection of samples taken from a process line operating under stable processing conditions or a number of
small samples taken from a large homogeneous one [64].

Ergodic hypothesis: A hypothesis implying that monitoring a stochastic system (e.g., an evolving microstructure) over a
long period of time would provide the same statistical measures as taking many independent realizations of that system over
time [7]. More formally, it states that all the microstates available to an ensemble of samples are available to every sample of
the ensemble [64]. This hypothesis allows investigating one arbitrarily chosen, sufficiently large ensemble member (an RVE,
see below) to calculate the average of a function over the ensemble space by equating it to the volumetric average [66]. This
averaged function would be independent of a and is given by:
�qðxÞ ¼ hqðx;aÞi � lim
V!1

1
jV j

Z
V
qðxþ y;aÞdy; ð2-2Þ
where h�i denotes the expectation operator. One way to fulfill this condition is to presume that the coarse-scale structure can
be modeled by a self-repeating unit cell (X, see Fig. 2) with periodic boundary conditions (PBC) [66]:
lim
V!1

1
jVj
Z
V
qðxþ y;aÞdy � 1

jXj
Z
X
qðxþ y;aÞdy; ð2-3Þ



Fig. 2. Multiscale finite element simulation of a two-scale structure: Each material (aka integration or Gauss) point of the macrostructure (left) is a
realization of a microstructure with fine details (right). Oftentimes the same microstructure is assigned to all the material points but in more realistic cases,
the microstructures might have to be different across the macroscale domain.
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Often only a single realization of the process can be observed (i.e., a single microstructure sample is available), and so the
ergodic hypothesis is assumed to hold rather than tested.

Microstructure1: The structure of a material whose scale is (i) large enough to contain sufficient local morphological details,
but (ii) much smaller than the characteristic length of the sample [9]. Microstructure is a general term that describes the struc-
tural features and topological arrangements at a particular length-scale (e.g., nanoscale or macroscale). For instance, in multi-
scale finite element analysis (FEA) of a material system, each material (aka integration or Gauss) point at the coarse scale (e.g.,
macroscale) is a realization of a structure with finer resolution (e.g., microstructure) that passes the constitutive behavior to the
coarse scale (see Fig. 2). In continuum mechanics literature, a microstructure is called, depending on its size, either an RVE or an
SVE (see below) [23,67,68].

Random field: An infinite collection of random variables which are indexed in time or space and share a common prob-
ability model [69]. Modeling a material system as a random field (aka stochastic or random process), would constitute that
the microstructure images corresponding to that material system can be thought of as independent realizations from that
random field.

Random heterogeneous materials: Materials that are comprised of different constituents (e.g., a composite) or a single
constituent but in different arrangements (e.g., a polycrystal with multiple crystallographic orientations) [9,62]. The local
morphological details of such materials often indicate some degree of randomness when it can only be characterized statis-
tically (hence the word random) [70]. Composites, concrete, block co-polymers, polycrystals, and sandstone are examples of
synthetic and natural random heterogeneous materials.

It is noted that, to include ordered microstructures (such as highly textured metallic polycrystals or ordered block co-
polymers) in this definition as well, the statistical characterization must identify their randomness degree as zero or
negligible.

Reconstruction: Construction of a (set of) statistically equivalent microstructure image(s) given some statistical charac-
terization. Such statistical characterizations are either derived from an actual material sample or defined by the user. In the
latter case, the user must ensure that the statistics correspond to a feasible structure.

Representative volume element (RVE): A finite region of a material sample which is (i) large enough to be representative
of the entire sample’s characteristics, and (ii) has (nearly) the same effective properties as the entire sample [71,72]. With
this definition, the size of the RVE clearly depends on the material system as well as the effective property under consider-
ation [65,73–82].

Statistical equivalency: The state where statistical measures of two (or more) microstructures match. This condition,
when met, would imply having similar effective properties (the opposite of this statement generally does not hold).

Statistical homogeneity: The condition when the calculated statistics for a microstructure are independent of the coor-
dinate system translation.

Statistical isotropy: The condition when the calculated statistics for a microstructure are independent of the coordinate
system rotation.

Statistical volume element (SVE): A finite region of a material that is smaller than an RVE. SVEs should be large enough so
that an ensemble of them contains at least as much information as a single RVE. Small SVEs necessitate the use of a large
ensemble for accurate estimation of effective properties. When analyzing SVEs instead of RVEs, the ergodic hypothesis is
invoked.
1 As our focus is on computational studies, the term microstructure actually refers to the image of a microstructure.
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Texture: A realization of a stationary random field (in computer graphics community). In materials science, the crystal-
lographic orientation map in a polycrystalline structure is also referred to as a texture. Herein, we use the former description.
3. MCR methods

To achieve statistical equivalency, the reconstruction algorithm should be compatible with the characterization method.
This way, the reconstructed microstructures will possess the statistical features obtained from an original microstructure
sample (e.g., by image analysis) or defined by the user (e.g., for design purposes, see also Section 5.1). Following this com-
patibility requirement, we have categorized several MCR methods based on the characterization scheme and review them,
along with the appropriate reconstruction methods, below.

The depth of details on each method reflects the proportion of papers covering them. For example, while there are a large
number of papers on the use of statistical functions for MCR, there are only a few recent works investigating the applications
of supervised/unsupervised learning in MCR.

Hereafter, we primarily focus on two-phase microstructures and always assign the subscript/superscript 1 to the primary
phase, i.e., the phase which must be characterized (e.g., the voids in a porous material or the fibers in a fibrous composite).
The discussions can be extended to multi-phase materials in a straightforward manner. We also note that experimental
imaging techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) often result
in grayscale images but herein it is assumed that the images are appropriately denoised (e.g., with a Gaussian filter) and
thresholded (e.g., via either matching the volume fraction [83] or Otsu’s method [84]). Fig. 3 illustrates howMCR is generally
used in computational materials science: Once the available microstructure sample is prepared, it is characterized to repre-
sent its morphology (a very high dimensional space) quantitatively. This characterized information is then fed into the
reconstruction algorithm to build an ensemble of samples with as many statistically equivalent microstructures as required.
Afterwards, the properties of the ensemble members are predicted via computer simulations to quantify their variability. If a
finite set of parameters are identified during characterization and property evaluation steps (denoted by, respectively, a and
b in Fig. 3), by changing the characterization parameters (i.e. a) in a feasible space and repeating the above process, a training
dataset can be created to relate the microstructure (through a) to the properties, b, via machine learning.
Fig. 3. MCR in computational materials science: (a) The material system of interest is determined by the given sample. If the original image is grayscale, it
needs to be processed (e.g., denoised and binarized) first. (b) The binarized image is characterized using one of the methods described in Sections 3.1–3.4
(here, the two-point correlation function is used). (c) A (set of) statistically equivalent microstructure(s) is reconstructed. The choice of the method depends
on (and must be compatible with) the characterization scheme. (d) The properties of the reconstructed sample(s) are calculated via, e.g., FEA. Here, the
changes in the tand curves of different microstructures are due to dispersion status. If the characterized features as well as the properties are parametrized
(here, with a and b), structure-property links can be established by reconstructing an ensemble of samples, evaluating their properties, and subsequently
using machine learning techniques.
3.1. Statistical functions

In this section, we start by describing the functions commonly used for statistical characterization of random heteroge-
neous materials, and then introduce the well-known Yeong and Torquato (aka YT) method for microstructure reconstruction.

3.1.1. Characterization
A microstructure image may be quantitatively characterized via some statistical functions which essentially capture the

degree of spatial correlation among different locations in a probabilistic sense. As shown in [85–90] and discussed below,
most microstructures cannot be sufficiently and uniquely characterized with only a single statistical function as these func-
tions quantify spatial correlations of different natures. Some of the most widely used functions in the literature are reviewed
below. The interested reader may consult [7,9,70,91–93] for other functions and more detailed discussions.



Fig. 4. Statistical functions: (a) A binary microstructure consisting of equal-size overlapping disks with radius of 25 pixels (the maximum allowable overlap
is 12 pixels). (b) The two-point correlation function of microstructure in (a), see Eq. (3-2). (c) Radially averaged two-point, two-point cluster, and lineal-path
functions of the microstructure in (a).
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3.1.1.1. Two-point correlation function. Let X denote the microstructure image on a square lattice. The collection of pixels
(voxels in 3D) of X are indexed and their brightness represents different material phases. For instance, a two-phase material
(see Fig. 4a) may be represented with a binary (here, blue and white) image. An image might also be represented on a tri-
angular lattice, especially to better characterize highly anisotropic structures with long range correlations [37]. As this is
rarely the case, herein we only focus on microstructure images on a square lattice:
2 Are
Xuv ¼ 1 if uv 2 phase 1
0 otherwise

�
; ð3-1Þ
where uv is the pixel index and determines its location within the image. Denoting this location by the vector r, the two-
point (auto)correlation function [55,56,94] for phase i is defined as:
Si2ðr1; r2Þ ¼ hXr1 ;Xr2 i; ð3-2Þ
where h�i denotes the expectation operator. In simple words, this function provides information on pair distributions regard-
ing phase i within the microstructure image. This definition can be generalized to higher order functions such as three and

four-point correlation functions (denoted by Si3ðr1; r2Þ and Si4ðr1; r2Þ, respectively).
If X is statistically stationary and isotropic, Si2 will only depend on the distance between the two points:

Si2ðr1; r2Þ ¼ Si2ðDr12Þ ¼ Si2ðjDr12jÞ ¼ Si2ðrÞ. Hence, for a stationary and isotropic material, Si2 has a simplified formulation and
can be efficiently calculated (e.g., via FFT [95–97], Monte Carlo [90], orthogonal sampling [39,63], or lattice-point algorithm

[42]). Si2ðrÞ is perhaps the most widely used and well-known statistical function and can be thought of as the probability of
tossing a line of length r on a microstructure image and having both its ends land on phase i. S2ðrÞ belongs to the family of n-
point correlation functions which have been widely used in cosmology to investigate dark matter halo [98,99] as well as
materials science to predict the bounds on effective (i.e., macroscopic) properties such as electrical permittivity
[56,58,100] and bulk modulus [57,101]. Another attractive feature of S2ðrÞ is that many experimental characterization tech-
niques including small angle X-ray scattering [53], time dynamics of energy transfer [102], and distant dipolar field nuclear
magnetic resonance [103] can provide structural information in the form of S2ðrÞ. For a stationary material consisting of two

phases with volume fractions (Vf )2 of /1 and /2, S
i
2ðrÞ of a digitized microstructure (i.e., an image) must have the following

properties [9,40,41,104,105]:

� Upper and lower bounds: 0 6 Si2ðrÞ 6 /i

� Non-negative Fourier transform

� Equality to /i and proportionality to specific surface (sis) at r ¼ 0: Si2ð0Þ ¼ /i and
dSi2ðrÞ
dr

���
r¼0

¼ � sis
2D, where D 2 f1;2;3g is the

dimensionality of the image

� Asymptotic value (for a large enough image of size l and in the absence of long range correlations): limjrj!lS
i
2ðrÞ ! /2

i

� Satisfying the triangular inequality: Si2ðrÞ P Si2ðzÞ þ Si2ðtÞ � /i, r ¼ t � z

As mentioned above, S2ðrÞ quantifies the microstructure in a probabilistic sense and so cannot be readily used to build
sensible structure-property maps. To provide a physical understanding of the quantified information and enable the identi-
fication of microstructures that have two-point correlation functions with similar features (e.g., the existence of fluctua-
tions), parametric basis functions have been used. Sample functions include monotonically decreasing functions (applied
especially to porous materials having voids of random shape and size) [42,54,55], damped oscillating functions
a fraction in 2D. For simplicity, the term volume fraction is also used in 2D but the meaning is clear from the context.
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[30,39,42,106,107], and functions with known structures corresponding to certain material systems, such as randomly
packed overlapping spheres [9,42,99,106].

Although it is commonly believed that there are many different microstructures compatible with a given S2ðrÞ [39,108],
Rozman et al. [40] argue that periodic microstructures with smooth boundaries are completely specified by their two-point
correlation functions. In their language, ‘‘smooth” refers to the condition where the length scales of S2ðrÞ have both an upper
bound and a lower bound determined by, respectively, the periodicity and the shortest wavelength present in the structure.
Unfortunately, most materials do not satisfy these conditions and hence S2ðrÞ cannot uniquely characterize them (e.g., it does
not include information about percolating clusters within the system [85]).

Higher order correlation functions (e.g., S3ðrÞ and S4ðr)) can also be used for characterization but their computation is
more demanding and it is illustrated in [85,88] that more efficient functions exist (see below).

3.1.1.2. Lineal-path function. As discussed above, S2ðrÞ cannot uniquely characterize the majority of material systems and
therefor additional statistical functions are required for effective characterization. The lineal-path function [86], LðrÞ, is
one such function that quantifies the amount of clusteredness along straight lines within a microstructure (see Fig. 4).

LiðrÞ is a two-point quantity and from a probabilistic point of view, gives the probability of throwing a line on the microstruc-
ture image and having the entire line land on phase i. It can be calculated either with a Monte Carlo approach [90] or by
building the histogram of chords [89].

Similar to S2ðrÞ, analytical expressions for LðrÞ have also been derived for certain material systems such as 1D digitized
medium of periodic/random rods [39], overlapping equally-sized particles [109], and equilibrium hard disks [39]. Unlike
S2ðrÞ, the lineal-path functions of different phases within a single microstructure are not linearly dependent [39]. In other
words, they are phase-distinguishing and can all be used in characterization (e.g., for an isotropic binary microstructure
S12ðrÞ ¼ S22ðrÞ þ /2

1 � /2
2 where /i is the volume fraction of phase i).

The lineal-path function may be related to other statistical functions as well. It is a rigorous lower bound on the two-point
cluster correlation function [109], which is not available analytically for overlapping particle models for spatial dimension
D P 2. In addition, the chord-length distribution function [9,86,109] can be evaluated by taking the second derivative of LðrÞ.

LðrÞ generally underestimates the clusteredness since the connectivity is only measured along straight lines (see Fig. 4c
where LðrÞ is below C2ðrÞ). In other words, this measure would render two connected sites within a microstructure discon-
nected if the connectivity is not along a straight line. In addition, it is generally calculated along certain directions (e.g., hor-
izontal, vertical, and diagonal) within the microstructure rather than along all the possible directions (see the recent work of
Turner et al. [110] for a computationally efficient method known as scan line method [111,112] to simultaneously calculate
LðrÞ along various directions). Amid these points, multiple studies [36,39,63,89] have shown that LðrÞ is useful for the char-
acterization of clusters in a microstructure.

3.1.1.3. Two-point cluster correlation function. The two-point cluster correlation function [9,85,88], C2ðrÞ, embodies important

topological connectivity statistics and is perhaps the most informative ‘‘two-point” statistical function. Ci
2ðrÞ quantifies the

probability of finding two sites within phase i that are at distance r and in the same cluster. Although it is intrinsically a 3D
descriptor, C2ðrÞ has been widely used to characterize 2D images as well. Given the digitized image of an arbitrary
microstructure, C2ðrÞ can be calculated with either Monte Carlo [113] or building the histogram (i.e., binning) of the pair-
distances for all the clusters (normalized by the total number of pair-distances).

Decomposition of the two-point correlation function discussed above gives some insight as to why C2ðrÞ is more infor-
mative than other two-point (and possibly higher order) statistical functions. Noting that in calculating the probabilities
of S2ðrÞ, the points which are in different clusters are not distinguished, the decomposition for a binary image reads [88]:
S2ðrÞ ¼ C2ðrÞ þ D2ðrÞ; ð3-3Þ

where D2ðrÞ measures the probability of tossing a line on the microstructure and having its ends land on different phases. As
Eq. (3-3) shows, unlike S2ðrÞ, C2ðrÞ is sensitive to clustering and percolation and in fact its volume integral diverges at the
percolation threshold [9,85]. As schematically illustrated in Fig. 5, C2ðrÞ is more informative than S3ðrÞ for microstructures
characterization.

3.1.2. Reconstruction
Having chosen statistical functions for characterization, reconstructing a statistically equivalent digitized microstructure

can be cast as an optimization problem by adjusting an initial digitized image Y (with the same Vf for each phase as the
reference image) to minimize some cost (aka energy) function, hereafter denoted by E. The adjustment is done by swapping
the pixels (voxel in 3D) of Y to minimize E, which measures the differences between the statistical function(s) of the original
image (X) and those of Y . As noted in Section 3.1.1, one specific function cannot solely characterize most microstructures so
usually multiple functions are incorporated into E as:
E ¼
Xm
j¼1

Xl

r¼0

ajjf̂ jðrÞ � f jðrÞj2 ð3-4Þ



Fig. 5. Effectiveness of C2ðrÞ in microstructure characterization: (a) The region enclosed by the solid line schematically represents the set of all
microstructures compatible with a particular S2ðrÞ. The microstructures in the shaded yellow region within this contour illustrate those with a particular
S3ðrÞ. (b) Unlike (a), here the shaded yellow region corresponds to microstructures with a particular C2ðrÞ. The shaded yellow region in (b) is smaller than
that in (a). The image is reproduced with kind permission from [88].
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where m is the total number of the functions considered (e.g., m ¼ 2 if f 1ðrÞ ¼ S2ðrÞ and f 2 ¼ LðrÞ), aj’s are the weights that

quantify the importance of each function, l is the maximum spatial distance at which the functions are compared at, and f̂ jðrÞ
are the target functions (e.g., those of X). We will elaborate on the choice of the functions in Eq. (3-4) below but note that
they generally depend on the available computational resources and tools as well as the material system of interest (e.g.,
because percolation is important in porous materials, appropriate functions must be used to characterize the clusteredness).
3.1.2.1. The Yeong and Torquato (YT) reconstruction method. The profile of the energy function in Eq. (3-4) has multiple local
optima [39,63,106,114] and therefore a heuristic method such as simulated annealing (SA) [39,63,88,115] or genetic algo-
rithm [116–118] is required to escape them while swapping the pixels. Hazlett [61] used SA to reconstruct a 3D image of
Berea sandstone by incorporating the variogram (the counterpart of S2ðrÞ) into E. Similarly, Rintoul and Torquato [62] used
SA and the radial distribution function (as opposed to the variogram) to reconstruct structure of dispersions. Yeong and Tor-
quato [39,63] generalized this approach to the stochastic reconstruction (aka YT) method in the late 1990s for reconstruction
of general random media. Over the past two decades, the YT method has been significantly improved and successfully
applied to MCR of various materials including particulate structures [62,116,117,119,120], chalk [112], porous media such
as soil [121] and sandstone [37,38,114,122,123], materials with labyrinth patterns [124], and filamentary [125] or multicon-
nected [126] structures. In its most basic form, the procedures of the YT method are as follows (see Fig. 6):

� An initial image (Y) with the same Vf as the target image (X) is randomly generated and its statistical functions (f jðrÞ’s)
are compared to those of X (f̂ jðrÞ’s) to calculate E.

� Two pixels of Y with different phases are swapped, and f jðrÞ’s are updated to obtain E0. If E0 < E, i.e. if the discrepancy
between the statistical functions of Y and X decreases, the swap is accepted. Otherwise, some adaptive probabilistic rule
(which, e.g., can be controlled by the cooling schedule in simulated annealing) is used to determine the acceptance or
rejection of the swap. The updated image would then serve as the initial image for the next iteration and this process
is continued until E < e, where e is the tolerance (a small number).

The YT method has also been used for reconstructing 3D samples given one or multiple 2D images [37,38,116,125,127–
131] where it is assumed that the statistical functions of the original 3D image are the same as those of the given 2D sample
(s), see Fig. 7.
Fig. 6. Illustrative example of the YT reconstruction method: The initial binary image is adjusted (optimized) via simulated annealing. As the temperature
drops (i.e., the microstructure system cools down), the energy (i.e., E) decreases. Here, only S2ðrÞ is incorporated into E in Eq. (3-4), and T and T0 refer to,
respectively, the current and initial temperatures in the SA algorithm.



Fig. 7. 3D reconstruction from 2D images: (a) The sample 2D image of a Fontainebleau sandstone, (b) pore space image and (c) perspective image of the
reconstructed 3D microstructure. The reconstruction is achieved by incorporating both S2ðrÞ and LðrÞ into the cost function. Images are reproduced with
kind permission from [63].
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3.1.2.2. Improvements of the YT method. The YT method is computationally expensive (especially if the microstructure image
is anisotropic, multiphase, or has a large number of pixels) and so significant research is conducted to increase the speed as
well as the accuracy (i.e., statistical equivalency) by investigating (i) what statistical functions to use in E as the reconstruc-
tion process progresses, (ii) how to efficiently update the f jðrÞ’s after each swap, (iii) how to determine the acceptance or
rejection of a swap, (iv) how to initialize Y , and (v) how image analysis techniques may be incorporated into the above pro-
cedure. In what follows, we discuss these points one by one.
3.1.2.2.1. Choice of statistical functions and their updating procedure. Rozman et al. [40] argue that for certain structures (see
Section 3.1.1.1), evaluating E solely via S2ðrÞ would result in accurate enough reconstructions (see Fig. 8). This scheme has
been used, with acceptable accuracy, in the past for MCR of soil pore space [121], checkerboard pattern and core-shell struc-
ture [106,132], overlapping disks [106], and sandstone [38]. However, as described in Section 3.1.1, for complex media that
exhibit both short and long range spatial correlations (such as porous media) and filamentary or multiconnected structures,
multiple functions must be incorporated into E to ensure statistical equivalency. Prior work [63,89,114,119,123] has demon-
strated that the use of LðrÞ (of either the primary phase or the secondary phase or both) in addition to S2ðrÞ increases the
accuracy by preserving the clustering statistics of X in Y . In these works, as noted in Section 3.1.1, LðrÞ is only calculated
in certain directions rather than all possible directions due to computational costs.

Use of other functions such as surface-surface correlation and chord-length distribution [88] has also been shown to
improve the accuracy (although the latter function can be directly derived from LðrÞ and Pant et al. [89] recommend the
use of LðrÞ as its profile is smoother). The extensive study of Jiao et al. [88] and the reviews in [36,133,134] provide strong
arguments that incorporation of the two-point cluster correlation function into E (besides S2ðrÞ) would best preserve the sta-
tistical equivalency between X and Y (see Fig. 9). For this reason, it is a common practice to treat C2ðrÞ as a test measure, i.e.,
putting a combination of various functions such as S2ðrÞ and LðrÞ into E in MCR and subsequently evaluating the performance
by comparing the two-point cluster correlation functions of X and Y .

Computational expenses are the primary reasons that one tries to minimize the number of statistical functions in E while
ensuring the statistical equivalency: the cost of evaluating such functions at each optimization iteration (i.e., updating E after
a pixel/voxel swap) is not negligible, especially because the number of iterations is often in the order of thousands, if not
millions. This is particularly true for anisotropic or multi-phase microstructures. To address this issue, it has been noticed
that:
Fig. 8. Reconstruction of random media with S2ðrÞ: A two-phase checkerboard and a three-phase core-shell structures are successfully reconstructed via
S2ðrÞ. Images are reproduced with kind permission from [132].



Fig. 9. Reconstruction of the two-phase microstructure of a concrete sample via correlation functions: (a) The original microstructure, (b) reconstruction
via S2ðrÞ alone, (c) reconstruction via S2ðrÞ and CðrÞ. Images are reproduced with kind permission from [88].
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� In the early stages of the optimization, most of the swaps are successful [37,38,89] and so one can start the heuristic opti-
mization and achieve quick convergence by evaluating E only via S2ðrÞ and incorporate other functions in the later stages
of optimization.

� For certain materials (e.g., isotropic), the functions may be evaluated in only a few directions (e.g., horizontal and vertical)
rather than all possible directions. Caution must be exercised because such implementations might introduce unwanted
anisotropy [106] if there are considerable short range correlations in the structure.

� To update the f jðrÞ’s of Y , one does not need to calculate them anew as the swaps only slightly perturb f jðrÞ’s (see e.g.
[37,89]).

� The accumulative cost of generating random numbers for each optimization iteration of the SA algorithm is not negligible.
This cost could be reduced by generating a large array of random numbers prior to optimization [37].

� Biased adjustment at the later stages of optimization (i.e., when the convergence rate with pure random selection is slow)
increases the convergence speed while reducing the noise (i.e., isolated black or white pixels). Rather than swapping the
phases of two randomly chosen pixels, Rozman [132] illustrated that exclusive selection of interfacial pixels (with at least
one neighboring pixel of different phase) substantially increases the convergence rate. Zhao et al. [123] proposed a similar
method and required the selected pixels to have a user-defined connectivity measure. Along the same line, Jiao et al. [37]
introduced the surface optimization algorithm where the pixels of the primary phase are grouped into two sets of high
and low energy and the random swaps are restricted to the former set (the high energy pixels are those that are not con-
nected to any pixel with the same phase). Finally, Tang et al. [38] introduced the different-phase-neighbor (DPN) pixel
selection rule and illustrated its superior performance. In the DPN method, the selection probability of any pixel is pro-
portional to the number of neighboring pixels with a different phase (see Fig. 10). As pointed out by Jiao et al. [37], the
idea of restricting the pixel selections to the interfacial pixels at the later stages of optimization is similar to the solidi-
fication process: when a large enough cluster is formed, it attracts the free particles to its surface in order to reduce the
free energy of the system. See [38,89] for comparative studies on the effect of pixel selection rule on convergence rate.

3.1.2.2.2. Optimization procedure via simulated annealing. As mentioned, the existence of multiple local optima in the profile
of E necessitates the use of a heuristic optimization algorithm. Simulated annealing and its variants have been widely used
for this purpose. SA was first introduced by Kirkpatrick et al. [135] who applied it to VLSI layout and graph partitioning. Glo-
bal minimization of E via SA is based on the physical annealing process: If a system is heated up to a high temperature and
then slowly cooled down to zero Kelvin, the ground state of the system will be achieved. Within the context of our recon-
struction problem, the initial image (Y) and the original microstructure (X) are, respectively, the system at high temperature
and zero Kelvin, while the pixel swaps resemble the system stabilization at each annealing step. Because annealing steps
must reduce the energy of the system over time, not every pixel swap is acceptable. Variants of the SA algorithm essentially
differ on what makes a pixel swap acceptable.

Assuming k� 1 iterations are done, the SA algorithm used by Yeong and Torquato [39,63] and many others [10,38,42,8
8,106,114,119,121,125,126,129,130,136,137] assigns the probability P to a pixel swap at iteration k based on the Metropolis
rule:
P ¼
1 E0 6 E

exp � E0�E
TðkÞ

� �
E0 > E

(
; ð3-5Þ
where TðkÞ is the so-called temperature at the current iteration and its functional form determines the cooling schedule. Eq.
(3-5) has close connections with the Boltzmann distribution: The probability of having a material system at a particular state
with temperature T and energy E is given by P � exp � E

T

� �
. Once P is calculated, the swap will be accepted/rejected by draw-

ing a Bernoulli random variable with event probability P. An inverse logarithmic schedule TðkÞ � 1=lnðkÞ would in principle
drive the system to its ground state [39]. Such a schedule is too slow for practical applications and so alternative formula-
tions such as TðkÞ ¼ T0k

k (where T0 is the initial temperature and k is a constant less than unity) are oftentimes practiced.



Fig. 10. Effect of acceptance and pixel selection rules on reconstruction via S2ðrÞ: (a) The original microstructure of a PEFC catalyst layer, (b) and (c)
reconstructed microstructures with random pixel swapping via, respectively, simulated annealing (SA) and threshold acceptance (TA). The TA algorithm
slightly outperforms SA. (d) Reconstructed microstructure with biased pixel swapping (DPN method) via TA. Biased pixel selection is clearly superior to
random pixel selection. In all the reconstructions, the accuracy will be improved by incorporating more statistical functions (such as lineal path) into the
cost function. Images are reproduced with kind permission from [89].
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Dueck et al. [138] developed a variant of SA known as threshold acceptance (TA) and illustrated its computational supe-
riority. The advantages of using TA over the original SA algorithm for microstructure reconstruction was first suggested by
Cule and Torquato [106] and later investigated by Pantil et al. [89] (see Fig. 10). The main difference between SA and TA is
that while in SA the acceptance of a bad swap is decided based on some probability measure, in TA it is done based on a

threshold value. Specifically, a bad swap at iteration k is accepted if E0 � E 6 Eth where Eth is the threshold energy and is cal-

culated as Eth ¼ E0k
k. E0 and k are, respectively, the initial energy and a constant less than unity.

The simpler version of TA known as the Great Deluge (GD) algorithm [139] has also been applied to the problem of recon-

struction [106,123,132]. In the GD algorithm, Eth is set to 0. This choice of Eth leads to a rapid reduction in the energy of the
system but convergence may not be achieved because the acceptance rate becomes impractically low at the final stages of
the optimization. To address this issue, Rozman et al. [132] suggest to allow a bad swap (i.e., one that would increase the
energy) after a large number of rejections.

In both the SA and TA algorithms, the optimization parameters such as T0 or E0, k, maximum number of iterations, and
number of swaps in each iteration (like the annealing process, in both SA and TA, each iteration consists of multiple swaps
to allow for the stabilization of the system) need to be carefully tuned. For this reason, the GD algorithm might appear more
appealing as it only has one adjustable input. However, further research must be conducted to investigate the efficiency of
GD for complex energy profiles (e.g., when multiple correlation functions are incorporated in E).
3.1.2.2.3. Further improvements. A few works [136,140,141] have demonstrated that efficient initialization (e.g., via random
fields, see also Section 3.3.2.1) of Y can decrease the computational costs of the YT method. To decrease the computational
costs of the YT method, the use of mathematical morphology has also been practiced. Zachary et al. [126] and later Gau et al.
[125] used the dilation and erosion (see Appendix A.1) technique to enable effective MCR of, respectively, doubly connected
donut-like and filamentary media solely via S2ðrÞ. Here, MCR is basically done on the dilated (and hence more connected)
primary phase and then erosion is applied to the reconstructed image to adjust both the Vf and the connectedness. In this
approach, the shape and size of the dilation/erosion element must be chosen by the user and one has to make sure that the
characteristic features of the original image are not lost through dilation. In other attempts, the hierarchical annealing [142]
and the closely related stable phase [130] methods are developed where the reconstruction process is conducted in multiple
resolutions to speed up the YT method (see Section 3.5.1 and Appendix A.2). Here, the basic idea is much like that in the
Gaussian and Laplacian pyramids [143,144] which are used to compress digital images through a multi-resolution decom-
position procedure (see Appendix A.2).

3.2. Physical descriptors

Similar to the previous section, we begin this section by elaborating on what physical descriptors are and how they can be
used for microstructure characterization in different material systems (Section 3.2.1). As the main advantage of such descrip-
tors lies in building PSP links, we provide some examples on this line of work in Section 3.2.1.1. We then describe the recon-
struction techniques (Section 3.2.2) and conclude the section with some notes on how to statistically choose the best (sub)
set of descriptors for MCR (Section 3.2.3).

3.2.1. Characterization
Characterization of finite size objects with physically meaningful descriptors in one-, two-, three-, and higher-

dimensional spaces has drawn notable attention in many disciplines including spatial statistics [145], materials science
[30,35,93,146–148], forestry [149], and biology [150]. In the realm of materials science, enabling direct elucidation of
processing-structure and structure-property relations in crystalline structures and composites (see Fig. 11) is perhaps the
most advantageous feature of this characterization method. The study of physical descriptors is particularly motivated by



Fig. 11. Sample material systems: (a) Crystalline structure illustrated by Voronoi cells. The colors distinguish different crystallographic orientations. (b)
Polymer matrix with randomly-shaped inclusions. The inclusions can be modeled with randomly-shaped overlapping ellipses. (c) Composite with equally-
sized fibers.
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(i) the existence of a large number of descriptors and the strong correlation among them [151], and (ii) the fact that the
choice of descriptors for efficient characterization depends on the material system as well as, for building structure-
property links, on the properties of interest.

Physical descriptors may be classified as either deterministic such as Vf or statistical like nearest-neighbor distances or
area/volume of the Voronoi cells. In the former case, a single value is sufficient to characterize the descriptor and will be
assigned to the entire microstructure image (e.g., a binary microstructure with inclusion Vf of 40%). In the latter case, how-
ever, a cumulative distribution function is required for descriptor characterization (e.g., the set of inclusions’ diameter or
nearest neighbor in a fibrous composite will follow a particular distribution. See, e.g., [35]). Table 1 lists some descriptors
that have been successfully used for building structure-property links in composite materials. Descriptors can also be cate-
gorized based on the information scale that they characterize [30,83]: for composites, at the highest scale is the Vf of the indi-
vidual constituents, followed by, respectively, the descriptors describing the dispersion status and the geometry of the
inclusions (in other words, a high-scale descriptor is assigned to the entire microstructure while a low-scale descriptor to
the individual features). In alloys, on the other hand, the descriptors characterizing the alloy texture are at the highest scale
and are followed by those characterizing the individual grains. It should be noted that the above classifications depend, to
some extent, on the material system as well as on the reconstruction procedure (see the example in Section 5.1). For exam-
ple, in a polymer nanocomposite with equally-sized non-overlapping circular inclusions, both the Vf and the number of clus-
ters (or equivalently the number of inclusions) may be categorized as deterministic descriptors at the highest length-scale. If
the inclusions are of different size and allowed to overlap, however, the number of clusters will describe the dispersion sta-
tus and the number of particles will be a statistical descriptor. For more discussions on this, see [30,151,152].
Table 1
Characterization with physical descriptors: List of physical descriptors commonly used for charac-
terizing the primary phase in microstructures consisting of a matrix and overlapping inclusions with
random size and orientation. While some of the descriptors are deterministic (i.e., a unique number
can be assigned to the entire microstructure or all the inclusions), others are statistical and therefore
identified via a distribution. It must be highlighted that the descriptor type, to some extent, depends
on the material system of interest. See the text for more details.

Descriptor symbol Description Type

Scale I: Composition
Vf Volume fraction Deterministic

Scale II: Dispersion
rncd Cluster’s nearest center distance Statistical
h Orientation angle of a cluster’s principle axis [153] Statistical
Ifiller Total surface area Deterministic
Nc Number of clusters Deterministic

Scale III: Geometry
rp Pore sizes (inscribed circle’s radius) [154] Statistical
A Area (of individual particles) Statistical
rc Equivalent radius, rc ¼

ffiffiffiffiffiffiffiffiffi
A=p

p
Statistical

dcmp Compactness [151] Statistical
drnd Roundness [155] Statistical
decc Eccentricity [155] Statistical
dasp Aspect ratio [156,157] Statistical
drec Rectangularity [155] Statistical
dtor Tortuosity [155] Statistical
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To characterize X (the digitized image of a microstructure) with physical descriptors, first various image segmentation
techniques [158], such as edge or cluster detection, are applied to identify all the objects (i.e., lines, edges, clusters, etc.) with
the primary phase. Then, the objects are analyzed to find the values and distributional characteristics (such as the mean and
variance) of, respectively, deterministic and statistical descriptors. Unless the set of descriptors is chosen a priori (e.g., based
on experience), these steps generally result in many descriptors, some of which might be strongly correlated or have neg-
ligible effect on either the material property or the quality of characterization. To address this issue, Xu et al. [151] developed
a machine learning based approach where after identifying the descriptors of an ensemble of nanocomposite samples (prior
to constructing structure-property relations), the number of descriptors is reduced by excluding both the correlated ones and
those which affect the statistical functions (introduced in Section 3.1.1) the least. In Section 3.2.3, some dimension reduction
techniques are introduced that can be used to identify the most effective descriptors for microstructure characterization.

In computational materials modeling [23,159] or design [30,83,137,151,152,160], rather than learning the descriptors
from a microstructure image, one determines the values of a set of pre-selected descriptors (via, e.g., design of experiments
[161–165]) and then proceeds to reconstruct the corresponding virtual microstructures and estimate their properties (via
e.g., FEA). In this application, it must be ensured that the set of descriptors (i) sufficiently characterizes the material system
of interest to eliminate (or at least minimize) the sources of uncertainty in building structure-property relations (see Sec-
tion 5.1 for an example), and (ii) all the points within the design hull (defined by the set of descriptors) correspond to real-
izable structures.

To enable the reconstruction of a 3D sample given 2D image(s) from it, stereological techniques can be used. Such tech-
niques commonly make some assumptions on the 3D geometrical features and then estimate various attributes of 3D objects
(such as number density, particle surface area, size, etc.) from those of the corresponding 2D objects [83,166]. For example,
the ST method introduced in [166,167] can be used to construct 3D particle distributions from 2D micrographs with the
assumption that the particles are spherical and have circular cross-section. For another example, the 3D aspect ratio in an
isotropic material system with elliptical inclusions may be estimated from a 2D image by [83]:
Fig. 12
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f�1ðd2DÞdh; ð3-6Þ
where f�1 is the inverse function for mapping 2D aspect ratio to 3D aspect ratio, and h� is the upper bound on the rotation
angle given the thickness of the sample. h� is defined as:
Max y
ðx � cos hþ y � sin hÞ2

f�1ðd2DÞ2
����� þ ð�x � sin hþ y � cos hÞ2 ¼ a22D

( )
¼ s; ð3-7Þ
where s, the distance between inclusion centers and the nearest surface of the layer, follows the uniform distribution
unið0;HÞ. We note that, there are many inclusions that, after projection to 2D, will have the same aspect ratio (see
Fig. 12b) and in Eq. (3-6) it is assumed that all such inclusions contribute equally to the integral (i.e., they are equally prob-
able to be found in the sample). Assuming the minor radii are the same in 2D and 3D (a2D ¼ a3D), f can be formulated as:
d2D ¼ f ðd3DÞ ¼
max x ðx�cos hþy�sin hÞ2

d23D

��� þ ð�x � sin hþ y � cos hÞ2 ¼ a22D
n o

a2D
; ð3-8Þ
. Effect of thin-layer observation on the 2D projection of a 3D inclusion: (a) The 3D ellipsoidal inclusion and its 2D projection, (b) possible 3D
res and the correspondent rotation angles for a single 2D projection, (c) upper bound on the rotation angle given the limited thickness, and (d) x� y
ate system for deducing the projection relation. Images are reproduced with kind permission from [83].
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3.2.1.1. Building structure-property maps via physical descriptors. As noted above, perhaps the primary advantage of character-
ization with physical descriptors lies in unraveling the direct effect of microstructure features on material property. In what
follows, we summarize some of the findings to highlight the significance and potentials of this line of work.

The family of nearest-neighbor distances have been rigorously investigated as they play an important role in transport
processes in particulate heterogeneous systems [9], microstructural evolution during recrystallization [168], particle coars-
ening [169], and liquid phase sintering [168]. Refs. [170–172] provide analytical expressions for relating the mean of nearest
neighbor distances to the n-point correlation functions of the uniform random microstructures of impenetrable spherical
particles. In [146] an expression for the mean values of first-, second-, and higher-order (up to sixth) nearest-neighbor dis-
tances for systems of equally-sized hard-core spheres in a 3D space is derived.

It is well accepted in the literature [29,30,83,151,152,173–177] that the degree of property enhancement of composites
(with a metal or polymer matrix), in addition to the constituent material and interface properties, depends on morphological
factors such as volume fraction, size, shape, and spatial distribution of the reinforcements. In metal-matrix composites,
Brockenbrough et al. [178] illustrated that the effect of fiber distribution is significant at lower volume fractions and Christ-
man et al. [179] concluded that clustering of the fibers significantly reduces the flow stress and strain hardening. The effect of
various morphologies on the damage initiation and evolution process in ductile matrix composites has also been investi-
gated via the Voronoi cell finite element [180,181]. These findings have been in line with the experimental studies of,
e.g., Lewandowski and co-workers [182,183] and Mummery et al. [184].

Similar studies have been conducted on polymer composites [175]. For example, it is found that wide distribution of par-
ticle size increases the electrical conductivity of rubber composites with carbon black fillers because the probability of
agglomeration increases and consequently the average gap width between conducting particles reduces.

In crystalline structures, perhaps the most critical features correspond to grains. The effect of shape, size, and crystallo-
graphic orientation of the grains on the properties has been extensively studied [185,186] and it is found, e.g., that intergran-
ular corrosion is sensitive to grain boundaries [78]. In addition, grain size has an inverse relation with yield strength and
toughness and thus its refinement is often used to improve mechanical properties.
3.2.2. Reconstruction
Once the set of physical descriptors is defined and their values/distributional characteristics are calculated (from an orig-

inal microstructure sample) or prescribed (by the user), reconstruction of a microstructure sample can be achieved by
adjusting an initial structure to match its descriptors to the target ones. The adjustment procedure is similar to that
described in Section 3.1.2 in that it commonly involves optimization for matching some of the descriptors.

Xu. et al. [30] developed a hierarchical reconstruction methodology for reconstructing composites with overlapping ellip-
tical inclusions of random size (see Fig. 13). Briefly, this method starts the reconstruction with the descriptors at the highest
scale level. Depending on the identified descriptors in the characterization step, this may involve, e.g., determining the Vf

and number of inclusions in a particulate structure. The method then proceeds to adjust the dispersion status of the inclu-
sions that often requires a heuristic optimization algorithm such as SA, e.g., to match the nearest neighbor distances or Vor-
onoi cell area/volume to the target values. Finally, local geometrical characteristics such as particle orientation and shape are
assigned. Zhang et al. [152] integrated a decomposition and reassembly strategy into this method to enable effective recon-
struction of composite microstructures with very low Vf and uneven distribution of cluster size. The hierarchical reconstruc-
tion method has been successfully used in materials design [29,30,83,151,152,160] and modeling [23] where the physical
descriptors are used as input variables in, respectively, the optimization process and the learned constitutive law.
Fig. 13. Flowchart of the hierarchical descriptor-based reconstruction algorithm. Image is reproduced with kind permission from [30].
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In crystalline structures, most approaches rely on ellipsoid packing and Voronoi tessellations to locate the grains in the
reconstructed microstructure [186–190]. The crystallographic orientations are then assigned either randomly or following a
certain distribution. As an example, the microstructure builder software package [78,187] has been developed to reconstruct
3D polycrystalline materials (see Fig. 14). It starts with an overpacked structure and swaps ellipsoids in and out with sim-
ulated annealing to achieve an optimal arrangement. Then, crystallographic orientations are assigned. The input is typically
grain size and shape data and the output is a 3D voxel microstructure. This software has been greatly improved over the past
few years and evolved to DREAM.3D [191].

Physics-based evolving algorithms such as Johnson–Mehl [192] and cellular algorithms [192,193] or the Voronoi polyhe-
dral model [194] use a similar approach. In such methods, first a prescribed number of points representing the individual
grains are positioned via, e.g., Poisson process and then grown to result into a crystalline microstructure (see Fig. 2 in
[192]). The nucleation (i.e., the growth) is produced in the kinetic limit of simultaneous activation of the available nucleation
sites and its rate is assumed to be isotropic and constant over all the sites. For a recent improvement on such algorithms see
the work of Barbe et al. [195].

3.2.3. Dimension reduction
As discussed above, physical descriptors are well suited for building PSP relationships and materials design. In many

cases, however, many descriptors may be identified in the characterization step when the ‘‘curse of dimensionality” (i.e.,
the large number of descriptors) would make reconstruction, PSP analyses, and materials design difficult. In this section,
we elaborate on some dimensionality reduction approaches to determine the set of descriptors that best characterize a
material system. Hereafter, we use the terms ‘‘feature” and ‘‘descriptor” interchangeably as the former term is more fre-
quently used in the machine learning and statistics community where most dimensionality reduction techniques originate
from.

3.2.3.1. Feature selection. In general, the objective of feature selection is threefold: improving predictive performance, provid-
ing more cost-effective predictors, and facilitating the discovery of underlying probabilistic principle of data generation
[196].

Variable ranking is one of the most common techniques for feature selection where a scoring function is used to deter-
mine the score (i.e., significance) of each feature [196]. With higher scores indicating more important features, variable rank-
ing enables the identification of the most informative features for building parsimonious predictive models. For example, Xu
et al. [151] employed a two-step feature selection process using descriptor pairwise correlation analysis and RReliefF vari-
able ranking approach [197] to select the physical descriptors that best control the damping property of polymer composites.
In another work, Hassinger et al. [198] used feature selection and identified the interfacial area as the most significant phys-
ical descriptor that can be correlated via two heuristic processing energy descriptors to establish a predictive processing-
structure model for polymer extrusion.

Exploratory factor analysis [199,200] is another technique for identifying the important features by grouping the corre-
lated descriptors together to build a set of latent common factors. Zhang et al. [152] employed factor analysis into a struc-
tural equation-modeling approach for the design of dielectric polymer composites.

In short, feature selection approaches are generally applied in MCR when the identified descriptors are too many to work
with and/or believed to be highly correlated. With feature selection, redundant statistical features can be dropped before
further analyses are conducted.
Fig. 14. Reconstruction with microstructure builder: Visualization of a synthetic polycrystalline microstructure with DREAM.3D. Image is reproduced with
kind permission from [191].
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3.2.3.2. Feature extraction. Different from feature selection, in this set of approaches the feature space is transformed into a
lower dimensional one where the physical interpretations are diminished. In this section, we survey two major categories of
feature extraction methods, namely, linear and nonlinear embedding.

3.2.3.2.1. Linear embedding. Among the feature extraction approaches that have been applied in materials science, linear
embedding is the simplest but most powerful technique. Principle Component Analysis (PCA) is perhaps the most famous
linear dimensionality reduction method. In short, PCA consists of an orthogonal transformation that converts a set of possi-
bly correlated variables into a set of linearly uncorrelated variables known as the principle components (see [201] for more
details).

A model reduction procedure is established in [202] with PCA and Karhunun-Loeve expansion to convert the high-
dimensional feature space of 3D microstructure images to lower-dimensional approximations. This low-dimensional repre-
sentation is then demonstrated to be very effective when taken as the inputs in the authors’ multi-scale analysis framework
of diffusion behavior. The application of such schema is limited to binary microstructures with simple spatial correlations. In
another work, Choudhury et al. [203] quantify similarity/difference between microstructures in ternary eutectic alloys by
first converting them to some spatial-correlation functions, and subsequently employing PCA to obtain an objective low-
dimensional representation of those functions. These representations are then taken as the predictors for classifying differ-
ent alloys in the later steps. To model the variability of workpiece properties in a deformation process, Wen et al. [204] study
the microstructure variability by applying a two-level bi-orthogonal Karhunen-Loeve decomposition on the high-
dimensional microstructure feature space. The set of heuristic features consists of the grain size and axis-angle in FCC nickel
alloy and is shown to effectively capture the variability of the grains in the microstructures.

3.2.3.2.2. Nonlinear embedding. Two major sets of nonlinear embedding approaches have been investigated in the literature
[205]. One set is the bottom-up approach where it is assumed that a nonlinear manifold (embedded in the original feature
space) governs the data distribution. Here, one attempts to preserve the local geometry of data on the manifold, i.e., to ensure
the nearby points in the original feature space would also be close in the lower-dimensional representations. Locally linear
embedding [206], Laplacian eigenmaps [207], and Hessian eigenmaps [208] are examples of this set of nonlinear embedding
approaches.

The second major set is the top-down approach where one attempts to preserve the geometric relations at all scales (i.e.
nearby and distant points on the manifold map to, respectively, nearby and distant points in the lower-dimensional space).
Examples of this set of approaches include Isomap and its variants [209,210].

The top-down approach is used in Li et al.’s work [205] for creating low-dimensional surrogates that characterize poly-
crystalline microstructures. In particular, the Isomap method is first used to reduce the dimensionality of the feature sets
(grain size and its orientation distribution) into lower-dimensional surrogates (M ! Å) and then reconstruction is achieved
by sampling from the surrogate space via an inverse mapping (Å ! M). While the M ! Å process is straightforward and
inexpensive, the inverse mappings Å ! M requires expensive step-wised iterative calculations for each of the statistical
moments.

While not preserving as many physical interpretations as feature selection methods do, feature extraction techniques are
advantageous in lowering the dimensionality of the design space and are trained easier to achieve a higher predictive accu-
racy. Hence, it is generally suggested to apply these methods when a very accurate and robust prediction model is desirable.
It should be noted that, the choice of feature extraction algorithms requires in-depth knowledge and investigation of the
complexity of the material systems.

3.3. Spectral density function

The Fourier transform (FT) is ubiquitously used across broad and diverse areas of science and engineering including
biomedical engineering [211], spectroscopy [212], numerical methods [213], radar [214], acoustics [215], image processing
[216], structural analysis [217], and mechanics [218–220]. In essence, the FT decomposes a waveform (e.g., a 1D signal or a
2D image) into a sum of sinusoids of different frequencies [221]. In the realm of MCR, such a decomposition would represent
the dominant microstructural features in the frequency space. Previous research suggests that the spectral density function
(SDF) (defined in Section 3.3.1) is sufficient to characterize some complex heterogeneous microstructures and, given an SDF,
the corresponding original sample can be reconstructed using, e.g., phase recovery techniques [97]. SDF generally takes a
simple parametric form; enabling materials design by considerably reducing the microstructure design space (aka
microstructure hull [7]). In addition to these capabilities, previous studies have shown that SDF is closely related to some
microstructural properties, e.g., in optical applications where it has been used for design representation in the optimization
of light trapping performance of solar cells [222]. Many researchers have demonstrated the use of SDF for characterizing
quasi-random structures made by bottom-up manufacturing processes such as nanoparticle self-assembly and nano-
wrinkling [223,224]. For instance, Yu and Zhang [32] recently developed an SDF-based concurrent design approach to bridge
the gap between structure-property and process-structure links in light-trapping nanostructures made of thin-film solar
cells. In this section, we first introduce microstructure characterization using SDF and then summarize two different recon-
struction techniques, namely, random field (RF) and disk packing.

Although SDF is closely related to the two-point correlation function (in that it describes the structure correlations in a
reciprocal frequency space rather than the real space), we devote an entire section to it because, as argued in Section 3.3.1,
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SDF provides a more physically meaningful representation than S2ðrÞ and the associated reconstruction techniques are lar-
gely different.

3.3.1. Characterization
To obtain the SDF of a microstructure, we start with its Fourier transform FðkÞ, which is a complex function of frequency:
Fig. 15.
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where X represents the binary microstructure image, Ff�g denotes the Fourier transform operator, k is a vector denoting the
frequency, Ak and£k represent, respectively, the magnitude and phase angle of the FT, and i ¼
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qðkÞ, is then defined as the squared magnitude of its FT:
qðkÞ ¼ jFfXgj2 ¼ A2
k; ð3-10Þ
For an isotropic microstructure, the vector k can be reduced to a scalar k through radial averaging to convert qðkÞ to a
one-dimensional function satisfying qðkÞ ¼ qðjkj ¼ kÞ.

The SDF essentially describes the distribution of the Fourier components over the frequency range where different fre-
quencies correspond to real space features at different length scales. According to Winner-Khinchin theorem [225], the
two-point correlation function is equivalent to the inverse FT of SDF:
S2ðrÞ ¼ F�1fqðkÞg; ð3-11Þ

Nevertheless, compared to S2ðrÞ, SDF provides a more convenient representation for designing microstructures. To illus-

trate this, we compare the SDF and S2ðrÞ characterization of four quasi-random microstructures in Fig. 15. These structures
mainly differ in feature scale and randomness degree and so it is highly desired for the characterization method to sensibly
quantify such differences. The key points of the studies demonstrated in Fig. 15 are as follows:

� In microstructures with a single dominant feature scale (Fig. 15a and b), unlike S2ðrÞ, the SDF clearly demonstrates the
increase (or decrease) in the feature scale and can be parameterized parsimoniously. In Fig. 15e and f, the SDF’s can be
simply approximated via step functions (the red-dashed curves, which can be fully characterized with only 2 parameters)
while the corresponding S2ðrÞ curves (Fig. 15i and j) require complex parameterization.
Comparison between SDF and S2ðrÞ characterization of four quasi-random microstructures: The differences in the microstructures such as feature
d degree of randomness are better represented via SDF rather than S2ðrÞ. The insets in a through d are the 2D SDF’s of the microstructures and due to
y, these 2D SDF’s reduce to the 1D SDF’s in e through h. See the text for more details.
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� SDF significantly reduces design dimensionality and is very efficient in highlighting the effect of randomness degree in
disordered media through widening the effective power spectrum range (see Fig. 15a–c and compare their corresponding
SDF representations) while the same phenomenon is captured by difficult-to-characterize damped oscillations in S2ðrÞ
curves (see Fig. 15i–k).

� In microstructures with a spread feature scale (Fig. 15d), the SDF is more illustrative than S2ðrÞ (compare Fig. 15h and l)
and can be simply formulated as a Gaussian distribution function.

� The key characteristics in SDF have direct associations with material functionalities. For example, the step SDF in Fig. 15g
and the spread SDF in Fig. 15h corresponds to morphologies which are appropriate for, respectively, light-trapping in
solar cells and producing angularly independent white color coating.

In short, SDF provides a convenient and informative representation for a wide range of microstructures and enables more
straightforward mathematical modeling as compared with S2ðrÞ. Identifying the appropriate parametric form of the SDF is
achieved through both physical understanding of the material processing and image analysis of the physical samples. For
example, a formulation of the SDF conforming to the Landau free-energy theory has been derived [226] to describe the
quasi-random materials born through the spinodal-decomposition process:
qðkÞ ¼ A

ðk2 þ k20Þðk4 þ 2k2b2 cosð2tÞ þ b4Þ
; ð3-12Þ
where A is a normalization factor ensuring the integral of SDF qðkÞ over ð0;þ1Þ equals 1, and ðk0; b; tÞ are the three governing
parameters that serve as the microstructure design variables in, e.g., an optimization process for achieving desired property.

3.3.2. Reconstruction
In this section, we illustrate two efficient analytical reconstruction methods that use the SDF representation as input to

reconstruct microstructures with different morphological characteristics; including channel-type and disk-type. For the
channel-type microstructures, we adopt the level-cutting random field approach for reconstruction, while for the disk-
type we employ a disk-packing algorithm. Both approaches are analytical and hence very efficient. Though demonstrated
for 2D microstructures, the approaches can be easily extended to 3D reconstructions.

3.3.2.1. Level-cutting random field. Realizing the microstructure image as a multi-variate sample taken from an underlying
random field (RF, e.g., Poisson [227,228] and, esp., Gaussian [60,136,140,141,229]), one can deduce that the reconstruction
of statistically equivalent microstructures can be achieved by finding that RF. Once the RF is found, reconstructed
microstructures are realized by simply taking realizations from it, and subsequently level-cutting them. To find the RF that
shares the same characteristics (i.e., SDF) with the original microstructure sample, two types of simulations are developed in
the literature: on-lattice (discontinuous) [59,60] and off-lattice (continuous) [136,229–231].

The on-lattice simulation of 3D Gaussian random field (GRF) using linear filtering [60] adapts well to the problems deal-
ing with numerical partial differential equations [229]. However, this method requires solving a set of linear equations and
the discontinuous description of the pore network is problematic for, e.g., molecular dynamics computation, simulation of
Brownian motion, or excitation relaxation inside disordered porous medium [229]. For this reason, Cahn’s scheme [231]
is widely used for efficiently generating continuous GRF and is discussed in detail below. Reconstruction using GRF is in gen-
eral efficient and accurate for random porous media but the performance deteriorates for particulate structures. To address
this issue, hybrid approaches are developed [140,141,227,228] where the results from GRF reconstruction are refined
through an optimization post-process via SA (detailed in Section 3.1.2). In [227,228], the author proposed to use level-cut
filtered Poisson fields based on Monte Carlo simulation to generate two-phase microstructures. It is shown that the widely
used level-cut Gaussian fields are special cases of level-cut filtered Poisson fields [227]. The merit of using filtered Poisson
field is that, unlike GRF, various geometries of inclusions such as high aspect ratio ellipses can be realized by adjusting the
parameters of the distribution (although the adjustment is not done in a straightforward manner).
3.3.2.1.1. Cahn’s scheme. Cahn’s Scheme [226,230,231] is essentially an analytical approach for generating realizations (i.e.,
reconstructed microstructure samples) from a GRF that has the same SDF as the original microstructure. This is achieved
through:
YðrÞ ¼ 2
N

	 
1=2XN
i¼1

cosðkik̂i � r þ /iÞ; ð3-13Þ
where /i and k̂i are uniformly distributed on, respectively, ½0;2p� and a unit circle. ki is a random variable whose probability

density function, PðkÞ, is determined by the SDF: PðkÞ ¼ qðkÞk for a 2D GRF and PðkÞ ¼ qðkÞk2 for a 3D GRF. After generating
the GRF, a level cutting process is often implemented to obtain a binary structure (see Fig. 16a and b) by making the volume
fraction equal to a desired value (e.g. 50%). As shown in Fig. 16c, qðkÞ in this example resembles a ring shape in 2D or, once
radially averaged, a Dirac delta function in 1D.

To explain why Cahn’s scheme works, we note that a standard GRF with zero mean is completely characterized by its two-
point correlation function [69]. In addition, as defined in Eq. (3-11), S2ðrÞ is the inverse Fourier transform of qðkÞ and can be



Fig. 16. Reconstruction of a binary microstructure via Cahn’s Scheme given a target SDF: (a) A zero mean GRF generated by Cahn’s scheme. (b) The binary
microstructure after level cutting the GRF in (a) with Vf ¼ 50%. (c) Thin ring shape 2D SDF of the binary microstructure in (b). The target SDF is uniformly
distributed within the narrow band marked by the dashed green donut.

20 R. Bostanabad et al. / Progress in Materials Science 95 (2018) 1–41
represented by an n-dimensional Fourier integral. Using the Wiener-Khintchine theorem, this n-dimensional integral takes a
simpler form and is replaced by a one-dimensional Hankel transform:
S2ðrÞ ¼ 2
n�2
2 Cðn=2Þ

Z 1

0

Jn�2
2
ðkrÞ

ðkrÞn�2
2

kn�1qðkÞdk; ð3-14Þ
where J is the Bessel function of the first kind, n is the dimension of the GRF, and qðkÞ is the one-dimensional SDF of the GRF.
For a 2D GRF, the above reduces to:
S2ðrÞ ¼
Z 1

0
J0ðkrÞqðkÞkdk ¼

Z 1

0
J0ðkrÞPðkÞdk; ð3-15Þ
Essentially, the above formulas illustrate that S2ðrÞ and SDF can both be used for characterizing a GRF.

3.3.2.2. Disk-packing. Disk-type structures are another important class of microstructures that can be fabricated by bottom-
up processes such as self-assembly of polymer nanospheres and cuttlefish ink nanoparticles [232]. Existing works have
investigated the possibility of packing mono-sized disk-shape particles to achieve certain types of SDF by adjusting the cen-
ter distances and number of disks. Most of these structures are loosely packed and possess a thin ring shape SDF [233]. Yu
and Zhang recently established a semi-analytical relationship between the distribution of disk numbers and disk radius for
targeted SDF profiles. The approach is based on a dense disk packing algorithm with a simple strategy: Two neighboring
disks repel each other if they overlap and vice versa. See [32] for the algorithmic details.

The SDF of mono-size disk packing structures resembles a ring-shape in 2D (or, after radially averaging it, Dirac Delta
function in 1D) with a simplified relationship between the peak frequency location kpeak of the SDF and disk radius r [32]:
r � L
1:69

kpeak; ð3-16Þ
where L is the side length of the structure. Complex SDF profiles can be achieved by packing disks with different sizes. Our
empirical studies in [32] suggest that the intensity of SDF at a certain frequency ki is proportional to the total area occupied
by the corresponding disks of radius ri, with ki and ri satisfying the relationship in Eq. (3-16): qðkiÞ / Nir2i , where Ni is the
number of disks of radius ri. In addition, when the total areas of disks for each size are equal, the corresponding qðkiÞ are
approximately equal. Thus, one can estimate the distribution of disk sizes for arbitrary SDF. As an example, the following
condition should hold to achieve a uniform SDF:
N1r22 ¼ N2r22 ¼ � � � ¼ Nnr2n; ð3-17Þ

Three examples are shown in Fig. 17 to illustrate the effectiveness and flexibility of this approach. Fig. 17b and c are

microstructures with very similar underlying (radially averaged) SDF (Fig. 17a) that consists of two narrow bands. Although
the particle geometries are distinct (circle vs. triangle), the underlying spatial correlation and feature scales are close, result-
ing in similar SDFs. The SDF in Fig. 17d follows a broad Gaussian distribution and the corresponding microstructure in
Fig. 17e possesses multiple feature scales (as opposed to those in Fig. 17b and c with only two apparent feature scales).

3.4. Machine learning

Recently, some machine learning techniques have been successfully applied to MCR. The main motivation of these tech-
niques lies in their speed and flexibility in that they are generally, as opposed to the reviewed techniques so far, applicable to
a broader range of material systems. We have categorized such works into three groups and review them in the following
sections.



Fig. 17. Reconstruction of quasi-random nanostructures via the particle packing algorithm: The SDF (a) of the microstructures in (b) and (c) consists of two
narrow bands that represent the two distinct feature scales, while the SDF (d) of microstructure in (e) has a Gaussian distribution. The insets in b, c, and e
are the 2D SDFs of the corresponding microstructures and due to isotropy, these 2D SDFs reduce to the 1D SDFs in a and d.
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3.4.1. Unsupervised deep learning
The emerging research area of deep learning has stimulated a plethora of applications across a variety of disciplines [234].

In general, deep learning models are hierarchies of stacked neural network layers that encode data into hyper-dimensional
spaces through linear multiplications and non-linear transformations. While widely recognized nowadays, neural networks
dropped to near pseudoscience status during the ‘‘AI winter” in the 1990 s because training large-scale deep neural networks
suffered from the so called vanishing gradient problem. The introduction of the layer-by-layer pre-training strategy via
unsupervised learning by Hinton et al. [235] addressed this issue and revitalized the use of such models in the field of arti-
ficial intelligence (AI) [236,237].

While unsupervised deep learning is widely used in the computer science community, its application in materials science
is still scarce. Recently, Cang et al. [238,239] employed the convolutional deep belief network (CDBN) [240] to hierarchically
extract implicit features and realize reconstructions for multi-scale anisotropic alloy microstructure. Their model consists of
three convolutional restricted Boltzmann machine (CRBM) layers, with a pooling layer between the second and the third
CRBM layers for further dimensionality reduction (see Fig. 18). While this model preforms satisfactorily in extracting fea-
tures from complex morphologies such as anisotropic alloy microstructures, it relies on a heuristic post-processing step,
flow-based difference-of-Gaussian (fDoG) filtering, which is specifically designed for the alloy system studied. Additionally,
unlike other deep learning models used in applications outside of MCR that are trained on millions of data, the model is
trained on only a hundred microstructure images. Insufficient training data may lead to an over-fitted model that is only
Fig. 18. The network configuration of Cang et al. [241] CDBN model for MCR: The model has three layers with a pooling one for further dimensionality
reduction.
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applicable to a specific material (sub)system (from which the data is collected) and difficult to be generalized. Since training
deep learning models that generalize well requires a significantly large amount of data, this model is suggested to be applied
when a cheap microstructure evolution simulation is available or a better strategy for parameter initialization is found. It
should be also noted that the potential of such deep learning model in materials design has not been fully exploited. For
example, the features extracted by CDBN or other unsupervised deep learning models have not been incorporated with pro-
cessing conditions and materials properties to establish predictive models. More investigations on this direction are needed.

3.4.2. Instance-based learning
Different from the characterization approaches that aim to quantify microstructure using statistical models, there is

another category of approaches that perform instance similarity search in databases of microstructures [242]. Briefly, the
essence of such approaches lies in three major steps: ðiÞ Creating a database that contains representative sample instances,
ðiiÞ Defining the feature space and similarity metrics applicable to all the samples in the database, and ðiiiÞ Conducting brute-
force or algorithmic search to find the most similar instance in the database upon query. In general, there are two major chal-
lenges associated with these instance-based approaches: data sufficiency and search efficiency. As for data sufficiency, not
only the database should be large enough, but also the feasible space must be well covered. To this end, a sophisticated data
evolution approach is essential as experimental data in materials science is oftentimes limited quantitatively and qualita-
tively. With a data evolution process, the size of database increases exponentially and so it is essential to develop a rapid
searching mechanism that can efficiently locate the most similar instance in the database upon a query.

Sundararaghavan et al. [15] addressed these two challenges by employing a Monte Carlo based microstructure evolution
approach and hierarchical classification models to reconstruct a 3D sample given a 2D microstructure image. Specifically, a
large database of 3D microstructure instances created computationally and experimentally is employed. Lower-level fea-
tures of these instances, as illustrated in Fig. 19, are then extracted for similarity analysis to create a hierarchical support
vector machine classification model. Once a 2D microstructure example is provided, the classification model performs a fast
search through the instance database and finds the most likely equivalent 3D microstructure as the reconstructed
microstructure. The retrieved 3D microstructures by this approach, are then validated by comparing their point-
correlation functions to those of the original 2D image. While a good match between the statistical functions suggests the
validity of this approach, the hierarchical classification model highly depends on the lower-level features (which are selected
heuristically) and it is yet unknown how this approach would perform if alternative features are chosen.
Fig. 19. Hierarchical microstructure classification: (a) Classification based on S2ðrÞ, and (b) classification based on S3ðrÞ. Image is reproduced with kind
permission from [15].
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The reconstruction procedure in instance-based learning is essentially a sampling process where only the stored instances
(i.e., microstructures) in the database can be realized. This sampling strategy limits the application of this approach to the
cases where a huge database of microstructure samples with great coverage is available.

3.4.3. Supervised learning
Recently, Bostanabad et al. [90] developed a versatile approach for MCR based on supervised learning for general material

systems. In this approach, characterization involves fitting an appropriate supervised learner to the original microstructure
image, X, and reconstruction consists of taking realizations from that supervised learner; fitting the model is like coding
while reconstruction is like decoding.

3.4.3.1. Characterization. In short, the fundamental idea here is to convert X into a training dataset, D, where the phase of
each pixel is represented as a function of its surrounding pixel phases (see Fig. 20). Once D is built, a supervised leaning
model is fitted to it to learn the conditional probability distribution of any individual pixel’s value given its surrounding pixel
phases. This fitted model, rather than storing the data (i.e., the image), efficiently summarizes it and can be subsequently
employed for fast and efficient reconstruction of statistically equivalent microstructures with arbitrary size.

Realizing X as a random sample from its underlying full joint distribution, f ðXÞ, reconstruction of a statistically equivalent
image Y of any size requires the (implicit) estimation of f ðXÞ. Bostanabad et al. [90] proposed two methods to characterize
f ðXÞ and subsequently reconstruct an image: A non-causal one based on Gibbs sampling [243] and a causal one. As the former
approach is expensive and requires careful use of the Gibbs sampler, the latter is preferred [90,113] and discussed hereafter.

To learn f ðXÞ for causal reconstruction, one can decompose it as:
Fig. 20.
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f ðXÞ ¼ f ðX11Þf ðX12jX11Þf ðX13jX11;X12Þ � � � f ðXn1n2 jX11;X12; . . . ;Xn1ðn2�1ÞÞ
¼ f ðX11jXð<11ÞÞf ðX12jXð<12ÞÞf ðX13jXð<13ÞÞ � � � f ðXn1n2 jXð<n1n2ÞÞ; ð3-18Þ
where Xð<ijÞ denotes the set of all the pixels in X ordered before Xij (assuming a raster-scan order, see Fig. 21). The above
decomposition illustrates that given a set of models that approximate the various conditional distributions on the right-
hand side (and hence f ðXÞ), Y can be reconstructed pixel-by-pixel via sampling from those models.
MCR via supervised learning: (a) The original binary image X. The white and black colors represent phase values. (b) The magnified view of a small
of X. The highlighted region (pixels within red boxes) represent an instance of a causal neighborhood with size w ¼ 2. These pixels are rearranged
ow vector for building a training dataset. This procedure is repeated for all the pixels in X to convert it to a training dataset. (c) The reconstructed
ructure. The image is reproduced with kind permission from [113].

Neighborhood and boundary effects in MCR via supervised learning: (a) The subset of the pixels indexed before Yij is the causal neighborhood (Mij)
pixel (here, Mij is of size w ¼ 3). The response pixel and those withinMij are color-coded as, respectively, black and blue. The red and blue pixels are
before Yij while the yellow pixels are indexed after Yij . (b) The green region represents the reconstructed image (from the pseudocode above) and

e pixels are added to its exterior so as its boundary pixels would not have missing data in their neighborhood. Here, the thickness of the blue region
the neighborhood size (w ¼ 2). The central part of the striped green region of size s1 	 s2 is chosen as the final reconstructed image.
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To make the approximation of f ðXÞ tractable and use only a singlemodel for estimating all the conditional distributions in
Eq. (3-18), Bostanabad et al. [90] assumed that X can be modeled as a form of stationary Markov random field (MRF) with the
following properties:

� Locality: f ðXijjXð<ijÞÞ ¼ f ðXijjMijÞ for a sufficiently large neighborhood Mij.
� Stationarity: f ðXijjMijÞ does not depend on pixel location ði; jÞ.

In the above, Mij contains a sufficiently large group of pixels surrounding one side of Xij (see Fig. 21) and the conditional
probability f ðXijjMijÞ has a Bernoulli distribution with an event probability that depends on the pixel values in Mij (for a bin-
ary microstructure image where the phase of interest is represented with 1, e.g., this event is defined as Xij ¼ 1). Mij is called
the causal [244] neighborhood of Xij because it only includes some of the pixels indexed (in a raster-scan order) before Xij.

The procedures for determining the size ofM in a data-driven way via cross-validation (CV) is outlined in [90,113]. Briefly,
the optimum neighborhood size is typically on the order of the largest topological feature in X and can be estimated by start-
ing with a relatively large neighborhood and shrinking the size down until the cross-validation (CV) error is minimized. An
attractive feature of the supervised learning approach is that it is almost insensitive to the chosen neighborhood size as long
as it is not considerably small [90,113].

Once the size of M is chosen and D is built, any off the shelf supervised learning algorithm can be used to fit a model to it.
Bostanabad et al. [90,113] used non-parametric classification trees [245–247] because they are particularly well suited for
handling categorical variables and very computationally efficient to either fit or make predictions with.

Bostanabad et al. [113] improved the original methodology by (i) incorporating user-defined predictors into the super-
vised learning model, (ii) characterizing and reconstructing 3D microstructures, and (iii) introducing a reduced order model
to reduce the size of D and avoid potential computational issues in 3D characterization.

MCR with supervised learning is applicable to a wide range of material systems (e.g. isotropic, anisotropic, and porous
with high/low volume fraction). In this framework, the characterization has the following features:

� It does not necessitate any preprocessing procedure (e.g., choosing features and then conducting image analysis to cal-
culate their statistics) and requires only one parameter (i.e., the neighborhood size).

� It is fast and only done once (unlike texture synthesis and multiple-point statistics reviewed in Section 3.5). If the size of D
is considerably large, the potential computational issues (e.g., storing D or fitting cost) can be addressed via using a
reduced order model [113].

� It would benefit from incorporation of user-defined predictors [113] especially those that characterize some physical fea-
tures such as local Vf or connectivity.

� Cannot be readily used to arrive at the characterization of a 3D microstructure given some 2D samples as the joint prob-
ability distribution in 3D cannot be estimated from that in 2D.

� Other than some general trends, does not explicitly provide sensible physical features that can be used for material
design. That is, the applicability of the model to various material systems comes at a price in that it is not straightforward
to use this method and directly study the effect of some features (such as particle distribution on the effective properties)
as there is no explicit descriptor or feature in the model.
3.4.3.2. Reconstruction. Once X is used to learn a model with an M of size w, reconstruction of an image with arbitrary size
s1 	 s2 in 2D is achieved pixel-by-pixel (voxel in 3D) by sampling from that model (see Fig. 21). The following steps summa-
rize the procedure (the steps for 3D reconstruction are similar, see [113]):

� Build an initial image Y of size ðm1 þwÞ 	 ðm2 þ 2wÞ, with m1 > s1, and m2 > s2.
� For i ¼ wþ 1;wþ 2; . . . ;wþm1 (row)
For j ¼ wþ 1;wþ 2; . . . ;wþm2 (column)
a. Use the fitted model to predict the Bernoulli parameter pij ¼ f ðYijjMijÞ
b. Generate Yij � BeroulliðpijÞ and update the corresponding pixel in Y .

� Pick the central part of Y with size s1 	 s2 as the reconstructed image.

At the boundary pixels of Y not all the predictors are available in M (see Fig. 21) and so the predictions thereof will be
noisy. To address this issue, Bostanabad et al. [90,113] recommend to reconstruct a larger image than required and choose
the central part because the noise dies out as one moves away from the boundary regions. The size of the initial image (i.e.,
the differences m1 � s1, and m2 � s2) depends on how its boundaries are initialized (the blue region in Fig. 21). The studies in
[90,113] indicate that putting spliced copies of the original 2D image on the boundaries perhaps produces the best results
where the differences can be set to ðm1 � s1;m2 � s2Þ � ðw;2wÞ.

An appealing feature of reconstructing randommedia with supervised learning lies in the negligible computational costs;
it only takes a few seconds to use the fitted model to reconstruct a batch of samples. Another attractive attribute is that the
reconstruction procedure is independent of the material system and does not entail any calibration parameters. The



Fig. 22. MCR via texture synthesis: Synthesizing (a) a large binary texture, and (b) a three-phase microstructure from small exemplars. The exemplars are
taken from [253] and [107], respectively.
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reconstruction quality, of course, depends on how well the supervised learner (i) is sampled from during reconstruction, and
(ii) models the original microstructure. The results in [90,113] illustrate that the procedures summarized above preserves
the learned features very well, and so it can be concluded that the degree of statistical equivalency between the original
microstructure image and the reconstructed ones (as well as the range of applications) depends on the quality of the fitted
model in the characterization step.
3.5. Texture synthesis and multiple-point statistics3

Texture synthesis originated in computer graphics and has a wide range of applications including occlusion fill-in, lossy
image, video compression, and foreground removal. The basic idea here is to synthesize a (large) texture (i.e., a stationary
image) given a small sample of the same texture (see Fig. 22). The early works in [248–250], and particularly that of Popat
and Picard [251], established the general framework of texture synthesis, but it was the pioneering and highly recognized
works of Efros and Leung [252] and then Wei and Levoy [253] and Efros and Freeman [254] that reformulated the problem
of texture synthesis to an exemplar-based framework and provided more practical solutions. In short, these works addressed
the ill-posed nature of the problem by assuming that the given texture sample comes from a stationary MRF and has the
spatial locality property. Such assumptions, as discussed in Section 3.4.3.1, imply that the conditional probability distribu-
tion of brightness value of any pixel, given the brightness values of its neighboring pixels, is independent of the rest of the
image.

Unlike the supervised learning method introduced in Section 3.4.3, the conditional probability distribution in Eq. (3-18) is
not explicitly modeled in texture synthesis and an image is reconstructed by repeatedly querying the given sample. Specif-
ically, the reconstruction is usually done pixel-by-pixel (voxel in 3D) in a specific order (e.g. raster scan), where each pixel’s
value in the reconstructed image is found by searching for the pixel (or set of pixels) in the original image whose neighboring
pixels best match the neighbors of the pixel to be generated. The methods largely differ in their choice of neighborhood
geometry, definition of similarity, handling boundaries, and search method. For example, the basic procedure described in
[253] to use a small exemplar (X) of size m1 	m2 and synthesize an image (Y) of arbitrary size s1 	 s2 is summarized as
follows:

� Build an initial (random) image Y of size s1 	 s2.
� Determine the size ðwÞ of the L-shaped causal neighborhood (see Fig. 21a).
� For i ¼ 1;2; . . . ; s1 (row)
For j ¼ 1;2; . . . ; s2 (column)
c. Build Mij, the causal neighborhood of the pixel Yij.
d. Compare Mij to the causal neighborhood of all the ðm1 �wÞ 	 ðm2 � 2wÞ non-boundary pixels in X.
e. Choose the pixel in X whose neighborhood best matches Mij. Set the value of that pixel to Yij.

Recognizing the microstructure image as a texture, the above methodology can be readily applied to MCR. Sundararagha-
van [255] was perhaps the first to directly apply texture synthesis methods to MCR where he reconstructed 3D microstruc-
tures using three orthogonal 2D sectional images taken along the x-, y-, and z-planes (see Fig. 23). Following the procedures
in [253], Liu and Shapiro [107] reconstructed various binary and grayscale microstructures in 2D=3D and illustrated the
effectiveness of texture synthesis methods in preserving statistical equivalency.

Recently, texture synthesis methods have also been successfully applied to the reconstruction of the equilibrium state
(i.e., a single image) [256] as well as the temporal evolution (i.e., a series of correlated images) [257] of polycrystalline
3 In these methods, characterization and reconstruction are best described together so we do not devote separate sections to them.



Fig. 23. 2D to 3D reconstruction with texture synthesis: (a) Three 2D sectional images from the x-, y-, and z-planes, (b) reconstructed 3Dmicrostructure, (c)
3D sectional views of the microstructure. The image is reproduced with kind permission from [255].
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microstructures. In the latter case, for example, one can conduct expensive phase field simulations for modeling polycrys-
talline grain growth [258,259] on a relatively small domain and then use texture synthesis to enlarge the domain (see
Fig. 24).

Texture synthesis based methods are applicable to various 2D=3D material systems (see e.g., Table 1 and Figs. 12 through
14 in [107]) and can also be used to synthesize a 3D solid texture from a 2D exemplar [107,255,260], see also Fig. 23. They
involve no fitted model for characterizing the microstructure and reconstruction is done by exhaustively searching for sim-
ilar neighborhoods in the original image. This exhaustive search makes these methods computationally prohibitive for
microstructures with long-range correlations or high resolution samples where a relatively large neighborhood is required
in the search process. We note that, some texture synthesis methods [254] use patches instead of pixels and hence are com-
putationally more efficient (see [261,262] for similar works in geostatistics). Also, use of Gaussian pyramids for multi-
resolution synthesis (introduced in Section 3.5.1) is a common practice in texture synthesis.
Fig. 24. Modeling polycrystalline grain growth with texture synthesis: The series of images illustrating grain coarsening on a small domain can be obtained
via expensive phase field simulations (top row). MCR via texture synthesis can be used to enlarge this domain (i.e., the microstructure size) while preserving
the statistics of the microstructure (bottom row).



Fig. 25. Microstructure reconstruction with multiple-point statistics: (a) Pore-space illustration in a Fontainebleau sandstone sample, (b) a 2D cross-section
of the 3D sample, and (c) sub-grid of the reconstructed sample (the light blue regions represent the pore space). The images are reproduced with kind
permission from [267].
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The multiple-point statistics method is very similar to texture synthesis [263] in that a structure is modeled as a station-
ary MRF and then characterized by calculating and storing the conditional probabilities of finding a specific phase at a pixel,
given the phases of a particular configuration of neighboring pixels. Thus, characterization is done implicitly; through
exhaustive enumeration of all possible phase combinations for a variety of neighborhood shapes observed in the original
sample. Reconstruction, similar to texture synthesis, is accomplished pixel-by-pixel through searching in the stored condi-
tional probabilities for the training neighborhood that best matches that of the pixel being reconstructed, and subsequently
sampling from the conditional probability associated with that neighborhood. Different methods primarily vary in the recon-
struction order (e.g., random or raster scan), choice of neighborhood geometry, and search method. This method is mainly
used in the geostatistics literature [264–270] where the study of porosity in geological structures (such as sandstone) is of
particular interest (see Fig. 25).

In texture synthesis and multiple-point statistics methods, perhaps the most important parameter is the neighbor-
hood size. This parameter greatly affects the results [107,252,255–257] and is oftentimes chosen manually via ad hoc
methods, e.g., to arrive at visually appealing results or minimize some predefined cost measure. For instance, Liu and
Shapiro [107] show that the chosen neighborhood size affects the quality (e.g., the preserved randomness) of the results
and recommend to set it to the range after which the two-point correlation function dies out.4 In addition, Harrison [271]
illustrates that the reconstruction order (e.g. a bottom-up raster-scan vs. a top-down raster-scan) usually affects the results
in texture synthesis (and so in multiple-point statistics) in that the spatial correlations might not be preserved. Addressing
these issues in 3D MCR is particularly challenging because on the one hand, 3D microstructures are much more complex
than 2D ones, and on the other hand the associated computational costs are significantly higher. Although applicable to a
wide variety of material systems in 2D and 3D, texture synthesis and multiple points statistics cannot be readily applied to
material design or building PSP links because the characterization is implicit and does not explicitly quantify the topological
features.

We note that, herein we focused on exemplar-based texture synthesis and multiple-point statistics methods as they pro-
vide more practical solutions and are evidently more appealing to the materials science community. Texture synthesis in the
computer graphics community has also been done via parametric MRF models [272,273] (where, similar to Section 3.3.1, the
model is fitted to the microstructure image, and then used to reconstruct new microstructures) and statistics matching
[248,249,274,275] (the statistics being, e.g., the pixels’ brightness histogram or distribution of filter responses) approaches.
Similarly, in geosciences, variogram-based [276] and parametric [277] approaches have also previously been used to model
(spatial) correlations in data.
3.5.1. Multi-resolution reconstruction via Gaussian pyramids
The exhaustive search for similar neighborhoods makes the methods introduced in Section 3.5 computationally demand-

ing. To address this issue (esp. when a large neighborhood is required to capture the long-range correlations), and ensure
convergence to a statistically equivalent image, Gaussian5 pyramids have been used in many works. Essentially, such pyramids
are constructed by stacking instances of an image at different resolutions upon one another (see Fig. 26), with the largest (i.e.,
the one with the highest resolution) and smallest images located at, respectively, the base and top of the pyramid.

One strategy to leverage Gaussian pyramids for speeding up an MCR technique (e.g., texture synthesis or the YT method
discussed in Section 3.1.2) is as follows:
4 Perhaps a better estimate might be made using the SDF because it characterizes a structure more clearly as illustrated in Section 3.3.
5 Due to simplicity and greater spatial localization, Gaussian pyramids are commonly preferred to other pyramids such as Laplacian, steerable, and feature-

based.



Fig. 26. Gaussian pyramids: The four-level pyramids of the original microstructure image (a) and the reconstructed one (b). The microstructures at the
same level (e.g., X1 and Y1) are statistically equivalent.
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� Build the pyramid (see Appendix A.2) of the original image, X, with n-levels. Denote the image at level i (i ¼ 0;1; . . . ;n� 1)
with Xi.

� Reconstruct a microstructure, Yn�1, that is statistically equivalent to Xn�1.
� For k ¼ 1;2; . . . ;n� 1 (go through levels)

a. Generate Yn�k�1 by up-sampling Yn�k (see Appendix A.2).
b. Optimize Yn�k�1 (e.g., via the YT method or texture synthesis) to ensure its statistical equivalency to Xn�k�1.

This hierarchical process results in a Gaussian pyramid for the reconstructed image where each level can be considered as
a statistically equivalent microstructure image to the corresponding level of the original image’s Gaussian pyramid (see
Fig. 26). Generally, more speed-up is gained by increasing the number of levels, but caution must be taken because if
Xn�1 (the image at the highest pyramid level) does not entail the essential morphological details of X0, either Y0 might
not converge (to a statistically equivalent image to X0), or the computational costs might start to increase (due to increased
optimization costs in step b).

4. Remarks

Having elaborated on various MCR methods in Section 3, in this section we summarize the key findings and provide some
guidance as to which methods can be applied to a particular problem. The discussions are focused around the methods that
utilize the characterized information from a given sample to reconstruct statistically equivalent microstructures (rather than
those which aim to recover the original microstructure). We also comment on the relative computational cost and accuracy
(in terms of ensuring the statistical equivalency between the original and reconstructed microstructures) of each method.

4.1. Statistical functions

MCR via statistical functions provides a very general framework for the characterization and reconstruction of various
material systems (such as anisotropic, porous, and multiphase) in 2D or 3D. Assuming the statistical functions of an
unknown 3D structure are the same as those of the given 2D image(s), this approach can also be used to reconstruct 3D struc-
tures given a (set of) 2D samples.

While multiple functions can be used for characterization, prior research has demonstrated that two-point correlation,
lineal-path, and two-point cluster correlation functions (denoted, respectively, with S2ðrÞ, LðrÞ, and C2ðrÞ for an isotropic
material) sufficiently characterize a wide range of material systems. For anisotropic or multi-phase (i.e., more than two
phases) microstructures, the selected functions must take into account, respectively, the direction of anisotropy and all
the necessary phase-to-phase correlations. See Section 3.1.1 for some detailed discussions on S2ðrÞ, LðrÞ, and C2ðrÞ.

With statistical functions, the reconstruction is usually done via the stochastic optimization (aka Yeong and Torquato or
YT) method reviewed in Section 3.1.2. The YT method ensures (by minimizing Eq. (3-4)) that the selected statistical functions
of the reconstructed sample are similar to those of the original microstructure.

In this framework, the accuracy depends on the choice of the statistical functions (more functions are required to accu-
rately characterize complex microstructures) as well as the efficiency of the reconstruction step in preserving those func-
tions in the reconstructed sample. The overall computational cost, however, mainly depends on the reconstruction step:
while the statistical functions of the original sample are only evaluated once during characterization, those of the sample
being reconstructed are evaluated many times in reconstruction. Although incorporating more functions in Eq. (3-4) pro-
vides more accuracy, this would notably increase the reconstruction cost. Hence, based on the available resources and
desired accuracy, a compromise has to be devised. In Section 3.1.2.2, we elaborated on various techniques that can signifi-
cantly speed up the reconstruction with the YT method.

In the YT method, one has to carefully implement the SA algorithm to achieve sufficient accuracy (i.e., minimize E in Eq.
(3-4)) with a manageable computational cost. The adjustment procedure might not be straightforward and even with the
best parameters the reconstruction cost using this method is generally expected to be high (hours to days, depending on
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the problem). The GD algorithm, as opposed to SA, only has one adjustable input and has been shown to minimize E (in Eq.
(3-4)) faster for simple structures that are completely characterized by S2ðrÞ. Further research must be conducted to inves-
tigate the efficiency of GD for complex microstructures.

Finally, we note that this framework is generally not applicable to building PSP links or materials design because ðiÞ the
statistical functions do not characterize the microstructure with physically meaningful parameters (even if the functions are
approximated with some parametric form, such parameters cannot be easily related to sensible microstructure features),
and ðiiÞ the YT method is too expensive for an iterative microstructure design process.

4.2. Physical descriptors

Descriptor-based approaches are applicable to the MCR of crystalline and particulate structures. Such methods may also
be used when the morphology can be approximated with some configuration of certain descriptors (see, e.g., Fig. 11b). Using
the stereological techniques and with some mild assumptions, this method enables reconstruction of 3D microstructures
given 2D samples.

Here, the most important step lies in the choice of the set of descriptors for microstructure characterization. As discussed
in Section 3.2, many descriptors can be considered but oftentimes a subset of them sufficiently characterizes a particular
structure and so the decision depends on the material system and properties of interest. Prior experience or dimensionality
reduction methods such as linear embedding or principal component analysis (see Section 3.2.3) can be used for this pur-
pose. These descriptors (and their distributional characteristics) are either obtained from an available microstructure sample
(via image analysis) or defined by the user (e.g., for designing a microstructure). In the latter case, it must be ensured that the
chosen values for the set of descriptors correspond to a feasible microstructure.

The reconstruction procedure, though often involving optimization, is not costly and commonly takes minutes to hours
depending on the problem. The parameters controlling the reconstruction step (e.g., those of the SA algorithm in the opti-
mization step) have to be adjusted for optimal performance and cost but oftentimes this process is more straightforward
than that discussed in Section 4.1.

Perhaps the most useful features of this method are on sensible and parametric characterization which make it straight-
forward to apply this method to material design. In particular, these features enable the integration of this framework with
metamodeling techniques to build processing-structure or structure-property links (see Section 5.1 for an example).

4.3. SDF

SDF provides a systematic approach for characterizing the high-dimensional microstructure morphology in the frequency
space. Though essentially equivalent to the two-point correlation function (see Section 3.3.1), microstructure quantification
via the SDF better represents the prominent morphological features than the two-point correlation function (see, e.g.,
Fig. 15). This clear representation of microstructure, makes the parametrization of SDF (with potentially physics-aware
parameters) easier.

As described in Section 3.3, with the SDF representation of a microstructure multiple methods (such as disk packing and
Cahn’s scheme) can be used to reconstruct statistically equivalent microstructures. These methods are fast (taking seconds to
minutes depending on the problem), mostly analytical, and (as opposed to the optimization methods discussed above) don’t
entail much tuning. Such fast reconstruction techniques, along with a parameterized SDF representation, enable the use of
SDF-based approaches for design and building processing-structure and structure-property links, esp., in optical applications
(see Section 5.2 for an example). In addition, assuming an unknown 3D structure possesses the same SDF representation as a
given 2D image, these reconstruction techniques can reconstruct 3D structures given a 2D sample.

Finally, we note that the equivalency between the SDF and S2ðrÞ representations implies that SDF-based methods are
applicable to isotropic binary materials that are completely (or to a good degree) characterized with their two-point corre-
lation function.

4.4. Supervised learning

The supervised learning approach introduced in Section 3.4.3 can be applied to various material systems such as multi-
phase, isotropic, and anisotropic in 2D or 3D. However, it cannot recover (or reconstruct) a 3D structure given some 2D sam-
ples because the underlying joint distribution of pixels (voxels in 3D) cannot be learned from that in 2D. In addition, because
the characterization step (without any user-defined predictors) does not result in necessarily sensible or physically mean-
ingful parameters, the supervised learning approach is not directly applicable to material design or building PSP links.

Perhaps the most attractive features of this approach lie in its flexibility, simplicity, and speed. These features make the
approach significantly efficient for building an ensemble of statistically equivalent samples for a wide range of material sys-
tems. The only adjustable parameter here is the neighborhood size which, as opposed to texture synthesis, does not notice-
ably affect the reconstruction accuracy as long as it is large enough. As for the cost, the characterization is done once and
usually takes a few seconds (or minutes for 3D structures) while the reconstruction is almost instantaneous in 2D and takes
seconds in 3D. Incorporating user-defined predictors into the characterization step (and using them accordingly in
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reconstruction) can significantly improve the efficiency of this approach and more research needs to be conducted to inves-
tigate this.

Finally, we note that because the supervised-based learning approach learns (i.e., fits a model to) the underlying joint dis-
tribution of the morphology, it can be used to develop a methodology for diagnosing microstructural defects in manufac-
tured products [47].

4.5. Texture synthesis

Although well established in computer graphics, (non-parametric) texture synthesis methods have only been recently
applied to MCR. Nevertheless, they have been successfully adopted to a wide range of multi-phase, anisotropic, static,
and dynamic (i.e., temporally evolving) material systems. In addition, reconstruction of a 3D structure given some 2D sam-
ples is also achievable with texture synthesis. Unlike other methods discussed in this section, the characterization step can-
not be separated from the reconstruction step in texture synthesis as the original microstructure image (rather than some
characterized information from it) is constantly used during the reconstruction.

Through multi-resolution reconstruction (see Section 3.5.1) and careful implementation, texture synthesis methods can
reconstruct microstructures of moderate size relatively fast. Here, Perhaps the determination of the neighborhood size is the
most important procedure. This parameter, as detailed in Section 3.5, greatly affects both the cost and accuracy and should
be determined with caution. The texture synthesis methods applied to MCR do not characterize the structure with any phys-
ically meaningful parameters and so cannot be used for material design or building PSP links in a straightforward manner.

5. Applications of MCR in materials modeling and design

In this section, we provide two examples on the use of MCR in materials modeling and design. In the first example, phys-
ical descriptors are used to create a microstructure dataset which is then used for finding the constitutive law of a class of
polymer composites. In the second example, the SDF is used to characterize the structure in nanodielectrics and map it to the
system properties (i.e., permittivity and dielectric loss).

5.1. Constitutive law modeling of fibrous composites via physical descriptors

In order to accurately simulate the material properties of composites, it is necessary to perform multiscale FEA to account
for the hierarchical material structure spanning multiple length scales. Because for most composites the general form of the
constitutive law is unknown, it is necessary to rely on direct numerical simulation (DNS) techniques [278–280] in multiscale
FEA. In a two-scale material (see Fig. 2), e.g., DNS requires solving nonlinear problems simultaneously at two scales: At each
increment in the macroscopic simulation the strain state is prescribed to all the integration (aka Gauss or material) points.
These strain states determine the boundary conditions for solving the corresponding nonlinear problems at the microscale
where the solution gives the stress for the next iteration of the macroscopic FEM calculation.

While DNS is quite flexible and accurate for a wide range of materials, it is very expensive; rendering DNS-based multi-
scale design of materials insurmountable. Herein, we demonstrate how MCR via physical descriptors, coupled with machine
learning techniques, can be applied to learn the constitutive law of a class of microstructures over a wide range of morpholo-
gies and strain states (i.e., boundary conditions). The practical significance would be to notably decrease the computational
costs of a macroscale simulation by replacing the finite element simulations at the microscale with a supervised learner that
models the material law. This dramatic speed-up, subsequently, would allow a designer to determine which microstructure
morphology will result in the desired properties at the macroscale. For a more complete description of the case study, see
[281].

The 2D material system consists of a matrix filled with identical over-lapping inclusions. The matrix and inclusions are
governed by, respectively, Arruda-Boyce [282] and Neo Hookean [283] hyperelastic laws and the goal is to learn the consti-
tutive law of the composite as a function of the morphology over a wide range of boundary conditions (i.e., the applied
macroscopic strain field). In hyperelastic materials (see Appendix A.3 for more details), the work is independent of the load
path and hence, such materials are completely characterized by the existence of a stored (or strain) energy function, �W , that
is a potential for the stress, �S. In particular:
�S ¼ @ �Wð�eÞ
@�e

; ð5-1Þ
where �w is the stored energy potential, �e is the applied macroscopic Green strain tensor, and the overhead bars of �W and �S
indicate that the values are homogenized over the microstructure domain.

The physical descriptors chosen to characterize the composite are: volume fraction (Vf ), mean distance of nearest neigh-
bors (�rd), aspect ratio (dasp), and the number of inclusions (NÞ. Given a feasible set of values for these descriptors, the proce-
dure outlined in [30] (summarized in Section 3.2.2) is used to reconstruct a microstructure sample (see Fig. 27).

While no finite set of physical descriptors may completely characterize such a material system, studies on the uncertainty
quantification illustrated [25] that these descriptors were sufficient and the reconstructed microstructures were large



Fig. 27. A sample RVE: The microstructure is large enough to be an RVE and it is reconstructed via the descriptor-based approach discussed in Section 3.2.
Here: Vf ¼ 0:267, �rd ¼ 33:286;N ¼ 45, and dasp ¼ 2:249.
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enough to be RVE. The boundary conditions for the microstructure were set to be the macroscopic applied strain,
�e ¼ ð�e11�e22�e12ÞT . This creates a design space with seven inputs, four physical descriptors and three boundary conditions
(see Table 2 for the ranges), and a single response, the homogenized potential density, �W . Ultimately, it is desired to create

a model that can quickly and accurately determine the gradient of the response (i.e., the homogenized 2nd Piola Kirchhoff
stress, �S, in the macroscale) with respect to the applied boundary conditions as a function of the aforementioned seven
descriptors.

To generate the data needed to learn the constitutive law and validate the results, a design of experiments (DoE) of size
10;000 was generated for the seven inputs via Sobol sequence [284,285]. The physical descriptor components of the DoE
were next used to reconstruct the corresponding RVEs. The RVEs and the corresponding boundary conditions from the
DoE then served as inputs to the DNS, from which the homogenized response was obtained.

Once the dataset was created, supervised learning techniques [286,287] were used to learn the constitutive law. As with
most supervised learning models, once fitted, the model is extremely efficient at performing future predictions and can
reduce the multiscale FEA costs by replacing the finite element simulations at the microscale. As for the supervised learner,
subsets of the first 8000 data points were used to train single layer neural networks as well as polynomial regressors (where
all the parameters were determined via CV) while the last 2000 data points were preserved for calculating the average pre-
diction errors for both the potential (eW ) and the stress (ejjSjj):
eW ¼ 100
Nsamples

XNsamples

i¼1

1�
�Wpredicted

i
�Wtarget

i

 !2

%; ð5-1Þ
and
ejjSjj ¼ 100
Nsamples

XNsamples

i¼1

ðj�Starget
i � �Spredicted

i j2Þ
2

ðj�Starget
i j2Þ

2 %; ð5-2Þ
Table 2
Descriptors and their ranges: There are four physical descrip-
tors and three strain components characterizing, respectively,
the microstructure morphology and boundary conditions.

Descriptor Range

Vf ½2;45�%
�rd ½0:3;0:5�mm
dasp ½1;5�
N ½40;100�
�e11 ½�10;150�%
�e22 ½�10;150�%
�e12 ½�40;40�%



Fig. 28. Convergence studies for the fitted neural networks and the polynomial regressors: As the size of the training dataset increases, the prediction of the
homogenized potential (left y-axis) improves, with neural networks outperforming polynomials. The prediction error of the magnitude of the homogenized
2nd Piola Kirchhoff stress (right y-axis), however, decreases consistently only for the neural networks.
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where Nsamples ¼ 2000, �Wpredicted
i and �Spredicted

i are the predictions from the supervised learner, and �Wtarget
i and �Starget

i are obtained
via FEA. Fig. 28 summarizes the results and illustrates that the fitted neural networks outperform the polynomials and can
achieve negligible errors in predicting both the homogenized response (i.e., �W) as well as its gradient (i.e., �S).

This case study demonstrates howMCR can be directly applied to the field of materials design by allowing the designer to
quickly and efficiently explore a very large design space using response surface models of structure-property relations that
would otherwise be too vast and expensive to explore. The approach we used can be readily generalized and applied to a
wide range of materials whose microstructure can be well-defined by a set of physical descriptors and for which an accurate
simulation model already exists. Additional applications of this work can include studying the impact of the choice of
descriptors, as well as model uncertainty on the response of the microscale RVE, and more importantly, on the macrostruc-
ture (e.g., via Markov chain Monte Carlo).

5.2. Elucidation of structure-property links in nanodielectrics via SDF

The spatial dispersion of fillers in nanodielectrics is a critical structural feature that determines the dielectric properties
such as permittivity and dielectric loss. The morphology of such materials possesses some special features including: ðiÞ low
volume fraction, ðiiÞ uneven distribution of clusters (heterogeneity), and ðiiiÞ irregularly-shaped large agglomerates that can-
not be modeled using simple geometries (e.g., a disk or ellipse). Although such structures are particulate, the above features
affect the performance of the descriptor based approach (detailed in Section 3.2) because the associated reconstruction algo-
rithm generally requires simple particle geometry and relatively even particle distribution. Here, we reconstruct realistic
microstructures using the SDF based approach and illustrate the applications of SDF in establishing structure-property rela-
tions for microstructure design.

As illustrated in Fig. 29, a narrow range of frequencies in the SDF is a sign of having clustered and unevenly distributed
particles in the real space. In contrast, with a broader SDF the particles are expected to be well dispersed. In this study, we
choose the gamma distribution [288], governed by the two parameters j and h, to parametrize the SDF curves of
nanodielectrics. By analyzing all the available samples (collected from several nanodielectric systems with similar polymer
dielectric permittivity), it was found that the fitted j is approximately a constant (1:1) while the fitted h varies considerably;
Fig. 29. Characterization of nanodielectrics with SDF: Each SDF (and hence the corresponding microstructure) can be characterized by a single parameter h.
As h increases, the number of particles and their dispersion increases.



Fig. 30. Relationship between dielectric properties and the parameter of SDF: Linear correlation between permittivity (left y-axis) and dielectric loss (tand,
right y-axis) with h.
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with a large h indicating more dispersion. This finding allows to characterize each microstructure by only one single
parameter; h.

To explore the relationship between h and the dielectric properties, five structures were reconstructed using GRF (Sec-
tion 3.3.2.1.1) with h varying from 0:5 to 2:5, j fixed (to 1:1), and a Vf of 2%. The dielectric permittivity and loss of these
microstructures were then calculated via FEA for an epoxy-silica system. The results are summarized in Fig. 30 and indicate
that both permittivity and dielectric loss (tand) are positively correlated with the dispersion parameter h. Such a correlation
indicates that a trade-off needs to be made because higher permittivity is desired for better storage capabilities while a lower
dielectric loss is preferred to reduce energy dissipation. The simple (almost) linear relationship also demonstrates the ele-
gance of SDF: the parameter h of SDF in the frequency space is a complex combination of various features in the real-
space that represents the overall dispersion status of the structure and thus leads to a simple structure-property relationship.
With the established relationships, one can optimize the parameter h to achieve a desired balance between energy storage
and dissipation.
6. Conclusion

Accelerated materials design calls for significant and concerted efforts on both experimental and computational aspects
of materials science. On the computational side, one avenue of research has been devoted to building processing-structure-
property relations for different material systems at various length-scales. We believe that microstructure characterization
and reconstruction, coupled with machine learning and computer simulations, provides a systematic framework to gener-
alize existing links or build new ones by statistically going beyond the limits where the data is available. To this end, herein
we reviewed the recent progress on this topic in the hope to provide the scientific community with some guidance on how to
apply the general MCR framework (see, e.g., Fig. 3) to materials analysis and (inverse) design.

The most common MCR methods (along with their algorithmic details, applicability, and associated challenges and costs)
were reviewed in detail in Section 3 where, if possible, the characterization step was separated from the reconstruction step
to help the reader better follow the overall procedure of each method. We briefly compared the various methods and sum-
marized their advantages and disadvantages in Section 4. Two examples on the applications of MCR in materials design and
modeling were also demonstrated in Section 5.

We believe the numerous works reviewed herein, though not perfectly comprehensive, clearly demonstrate the signifi-
cance and the potentials of the role that MCR plays in materials science. More research and in-depth studies must be con-
ducted to further develop the various MCR methods (esp. the recently developed ones based on machine learning and SDF)
and seamlessly integrate them with computer simulations (such as FEA) and data-mining techniques to tackle the state-of-
the-art materials design challenges including building sensible processing-structure links in additive manufacturing, consti-
tutive modeling of composites, uncertainty quantification and propagation in multiscale materials design, Bayesian calibra-
tion and bias correction of phenomenological material models, and so on.
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Appendix A

A.1. Morphological operations: dilation and erosion

Morphological operations apply a structuring element object (SEO) to an input image (2D or 3D) to create an output
image with the same size. In such an operation, the value of each pixel (voxel in 3D) in the output image is determined
by comparing the corresponding pixel in the input image with an appropriately defined neighborhood of its surrounding pix-
els. The shape and size of the neighborhood is determined by the SEO and can make the morphological operation sensitive to
specific shapes in the input image.

Dilation and erosion are the most basic morphological operations. They are available in almost all commercial software
and take fractions of a second to execute. While dilation adds pixels (voxels in 3D) to the boundaries of the foreground
(objects) in an image, erosion removes pixels from the object boundaries (see Fig. 31). More specifically, in dilation
(erosion) the value of the output pixel is themaximum (minimum) value of all the pixels in the input pixel’s neighborhood.
In dilating (eroding) a binary image, if any of the pixels in the input image is 1 (0), the corresponding pixel in the output
image will be 1 (0).

A.2. Gaussian pyramid for image compression

The Gaussian pyramid [244] (aka, hierarchical discrete correlation [143]) is commonly used in image analysis to decor-
relate the neighboring pixels (voxel in 3D) and arrive at a compact representation of the image (see [289] for a review on
image compression techniques). The compact representation of an image allows to, e.g., enhance the salient image features
(such as edges and foreground objects) and reduce storage space or sampling rate.

Let X0 be the original image and X1 be the reduced version of it after low-pass filtering (which is done by convolving the
image with a family of local and symmetric weighing functions). Define X2; . . . ;Xn similarly. The sequence of the images
X1; . . . ;Xn, as visualized for a 2D image in Fig. 26, resembles a pyramid where X1 and Xn are located, respectively, at the base
and top of the pyramid. If the filtering function approximates a Gaussian distribution function, the resulting pyramid is called
the Gaussian pyramid.

Although there are various image compression techniques available, the Gaussian pyramid has attracted much attention
in MCR literature because, as described in Section 3.5, it reduces the overall computational costs through hierarchical recon-
structions. Below, we demonstrate how a Gaussian pyramid can be built in either a bottom-up or top-down procedure for a
1D signal. The procedure is similar in 2D and 3D.

Let wðuÞ be a discrete weighing function defined at integer values and non-zero only for �m 6 u 6 m. wðuÞ is constrained
by the following equations [143]:
Fig. 31.
white f
The SEO
Pedagogical illustration of dilation (right panel) and erosion (left panel) with two different binary SEOs on a binary image (black background and
oreground): Through dilation (erosion) with each SEO, the green (red) pixels will be added to (removed from) the foreground in the original image.
s are shown below each image.
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Normalization :
Xm
i¼�m

wðiÞ ¼ 1; ðA-1Þ

Symmetry : wðuÞ ¼ wð�uÞ for all u; ðA-2Þ

Unimodal : wðu1Þ P wðu2Þ P 0 for 0 6 u1 6 u2; ðA-3Þ

Equal contribution :
Xm
i¼�m

wðjþ irÞ ¼ 1
r

for all 0 6 j < r; ðA-4Þ
where r is the sampling order (e.g., to reduce the number of nodes across the Gaussian levels to half or one-third, respec-
tively, r would be 2 and 3). Eq. (7-4) stipulates that all the nodes at any particular level must contribute the same total
weight to the nodes at the next higher level. If m ¼ 2, e.g., the above constraints are satisfied when wð0Þ ¼ a,
wð�1Þ ¼ wð1Þ ¼ 1

4, and wð�2Þ ¼ wð2Þ ¼ 1�2a
4 with 1

4 6 a 6 1
2. Having defined the weighing function, the value of node i at pyra-

mid level n, Xn;i, is then calculated as:
Xn;i ¼
Xm
u¼�m

wðuÞXn�1;riþu; ðA-5Þ
Eq. (7-5) is repeatedly used n times to build the Gaussian pyramid. This procedure of reducing (down-sampling or coars-
ening) a signal for one level is schematically illustrated in Fig. 32a. To up-sample or expand a signal (i.e., to do the opposite of
the above procedure):
Yn�1;i ¼ rD
Xm
u¼�m

wðuÞYn;i�m
r
; ðA-6Þ
where D is the dimensionality of the signal (here D ¼ 1Þ and only the terms for which i�m
r is an integer are included in the

summation. Expansion of a 1D signal for one level is illustrated in Fig. 32b.
Fig. 33 illustrates how the above procedure can be used in 3D to build a three-level Gaussian pyramid (i.e., by coarsening

the original image twice). As it can be observed, each level of the pyramid contains less morphological details compared to its
lower levels.

A.3. Hyperelastic materials

Hyperelastic materials provide a natural framework for the frame-invariant formulation of anisotropic material response
by simply embodying the anisotropy in the potential, W . A consequence of the existence of a stored energy function is that
the work done on a hyperelastic material is independent of the deformation path. This behavior is approximately observed in
many rubber-like materials [283].

The energy density function of the Arruda-Boyce model, wABðCÞ, depends on three polymer properties (the initial bulk
modulus K0, the initial shear modulus l0, and the stretch at which the polymer chain network locks km) and is given by:
wABðCÞ ¼ l
X5
i¼1

aib
i�1ð̂Ii1 � 3iÞ þ K

2
J2 � 1
2

� lnðJÞ
 !

; ðA-6Þ
Gaussian pyramid: 1D illustration of (a) reducing and (b) expanding a signal (with sampling order, r, of 2) to build a Gaussian pyramid. Only two
f the Gaussian pyramids are shown where each row of nodes represents a level in the pyramid. In reduction (expansion), the value of each node at
(lower) levels is obtained through a weighted sum of the node values at the lower (higher) level. Here, the node spacing doubles across the levels
he same filtering function would be used across the levels.



Fig. 33. Gaussian pyramid in 3D: By repeatedly applying Eq. (7-5) with r ¼ 2 to the original image in (a), images with half (b) and one-fourth (c) resolution
can be constructed. The numbers stand for pixel indices and the images in (b) and (c) are magnified, respectively, twice and four times to better illustrate
the effect of coarsening.
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where b ¼ 1
k2m
;a1 ¼ 1

2 ;a2 ¼ 1
20 ;a3 ¼ 11

1050 ;a4 ¼ 19
7000, and a5 ¼ 519

673;750 are all obtained via the first five terms of the inverse Lange-

vin function, J is the determinant of the deformation gradient, Î1 ¼ I1J
�2=3 depends on the first invariant of the right Cauchy-

Green deformation tensor (i.e., I1 ¼ TrðCÞ), and l is calculated from the material properties km and l0:
l ¼ l0

2

X5
i¼1

iaib
i�1 Îi�1

1

 !�1

; ðA-6Þ
In the example of Section 5.1, the matrix material properties are chosen as follows:
Kmat
0 ¼ 800 MPa; lmat

0 ¼ 180:5 MPa; kmat
m ¼ 2:8
The energy density function of the Neo-Hookean model, wNKðCÞ, is defined as [283]:
wNKðCÞ ¼
l0

2
ð̂I1 � 3Þ þ K0

2
ðJ � 1Þ; ðA-7Þ
and the chosen values for the example in Section 5.1 read Kpar
0 ¼ 4:0 GPa and lpar

0 ¼ 1:9 GPa.
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