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Evolutionary Gaussian Processes
Emulation plays an important role in engineering design. However, most emulators such as
Gaussian processes (GPs) are exclusively developed for interpolation/regression and their
performance significantly deteriorates in extrapolation. To address this shortcoming, we
introduce evolutionary Gaussian processes (EGPs) that aim to increase the extrapolation
capabilities of GPs. An EGP differs from a GP in that its training involves automatic dis-
covery of some free-form symbolic bases that explain the data reasonably well. In our
approach, this automatic discovery is achieved via evolutionary programming (EP)
which is integrated with GP modeling via maximum likelihood estimation, bootstrap sam-
pling, and singular value decomposition. As we demonstrate via examples that include a
host of analytical functions as well as an engineering problem on materials modeling,
EGP can improve the performance of ordinary GPs in terms of not only extrapolation,
but also interpolation/regression and numerical stability. [DOI: 10.1115/1.4050746]
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1 Introduction
Emulation or surrogate modeling has become an indispensable

part of many scientific and engineering disciplines. Over the past
few decades, many emulation methods have been developed.
Some prominent examples include neural networks [1,2], Gaussian
processes (GPs) [3–6], which are closely related to Kriging models
[7–10], radial basis functions (RBF) [11], support vector regressors
(SVR) [12], boosted trees [13], random forests [14], and evolution-
ary programming (EP) [15–17]. Among these methods, GPs have
played a pivotal role in engineering design because they are easy
to train and interpret, can reasonably quantify prediction uncertainty
[18,19], have tractable conditional distributions, can emulate various
function forms (e.g., smooth, fluctuating, rough, ·· ·), and can handle
qualitative inputs [20]. GPs, unlike deep learning models or any big
data-based emulator, are also highly effective in interpolation/
regression when the training data are sparse and noisy. However,
similar to many other emulation methods, the predictive power of
ordinary GPs drastically deteriorates in extrapolation, see Fig. 1.
To address this limitation, we build evolutionary Gaussian pro-

cesses (EGPs) via a novel framework that systematically integrates
GP modeling with EP, singular value decomposition (SVD),
maximum likelihood estimation (MLE), and bootstrap sampling.
Our results of comparing EGPs with ordinary GPs indicate that
(i) EGPs generally outperform GPs in extrapolation, regression,
and interpolation (see Fig. 1(b) for a simple example), and (ii)
EGPs are numerically more stable than GPs.
As detailed in Sec. 2.1, the predictive power of ordinary GPs sig-

nificantly decreases in extrapolation. This behavior is known as
reversion to the mean and is a by-product of the additive nature
of a GP predictor which has two parts. The first part consists of a
set of parametric mean functions while the second part relies on cor-
relations between the query point and the training data. In extrapo-
lation, these correlations become extremely weak, so the GP
predictor relies primarily on the predictions provided by the para-
metric mean functions (hence the term reversion to the mean). In
ordinary GPs, no parametric functions are used and hence their
extrapolation capabilities are minimal.
Reversion to the mean in GPs has been studied previously and

prior works can be divided into two primary categories. In the
first approach, new covariance functions or kernels are designed

to either discover and preserve patterns [21] or decay slower as
the distance between a query point and the training data increases
[22–24]. Pattern preserving kernels are built by modeling the spec-
tral density—the Fourier transform of a kernel—by a parametric
model (e.g., a Gaussian mixture) whose Fourier transform can be
obtained analytically. While these kernels are powerful and
provide insights into the data trends, their applications are limited
to low-dimensional problems whose the patterns rely on trigono-
metric functions. GPs with slow decaying kernels break down in
extrapolation if the distance between the query point and the train-
ing data is large.
In the second category, a set of parametric basis functions such as

polynomials and trigonometric functions are employed in training
to build the so-called universal GPs [9,25]. Each function’s signifi-
cance is then determined by their coefficients which are often esti-
mated via MLE. A large (small) coefficient indicates the importance
(irrelevance) of the corresponding function in explaining the rela-
tions between the inputs and outputs in the training data. If many
basis functions are used, regularization must be exercised to
avoid overfitting [14]. The primary limitation of addressing rever-
sion to the mean with this approach is that the basis functions are
designed by humans who generally include simple and application-
dependent functions. This limitation also applies to methods that
combine sparse regression with GPs.
Our approach for training GPs with extrapolation capabilities is

similar to the second category but unlike prior research we automat-
ically discover the parametric mean functions that must be used in
GP modeling. Figure 2 demonstrates the simplified flowchart of our
framework. We start by fitting an ordinary GP model to the original
training data which can be sparse and/or noisy. We then use this GP
model to generate training data for EP which discovers some bases
(i.e., symbolic functions) that regress the new data. Next, we
examine the bases found by EP based on a statistical measure that
uses SVD, MLE, and bootstrap sampling. We select the bases
with the best measure, include them in the discovered bases
(DBs) repository, and repeat the preceding steps while adapting
some of them to consider the most updated version of the DBs repo-
sitory. Once the convergence criterion is met, we stop the iterations.
The output of the framework is a GP model whose mean function is
the DBs repository which improves not only the predictive power of
GP (in both interpolation and extrapolation) but also its numerical
stability. The rationales behind each step of our framework are
detailed in Sec. 3.
Our efforts toward building emulators with extrapolation capabil-

ities have some connections with (inverse) system identification and
symbolic regression. The goal of system identification is to discover
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the underlying governing dynamics of a system using some
observed data [16,26–28]. The objective of symbolic regression is
to discover a set of symbolic functions that regress the training
data well [17,29–33]. With either of these two methodologies, the
trained model provides extrapolation capabilities as long as the
underlying physics of the data source (i) is effectively learned
over the support of the training data and (ii) does not change
outside of the training domain.
Different techniques such as EP, sparse regression [26,29,30],

and NNs [31,32] can be used for system identification or symbolic
regression but none is free from limitations. For instance, EP is very
sensitive to noise and tends to output local optima that poorly

extrapolate. Sparse regression requires a priori specification of the
bases or symbolic functions. Hence, it is limited to simple and low-
dimensional problems. NNs with symbolic activation functions
provide limited representation power because with non-trivial acti-
vation functions the gradients quickly vanish/explode or the sto-
chastic gradient descent fails to converge to sufficiently good
local optima [1,34]. Among these methods, some of the limitations
of EP can be methodically addressed by our framework, and hence,
we employ EP to discover parametric bases in our approach.
The rest of the paper is organized as follows. In Sec. 2, we

provide some technical background on GP modeling and EP. We
elaborate on the algorithmic details of our approach in Sec. 3 and
compare its performance with ordinary GPs and EP on a set of ana-
lytical functions and an engineering problem in Sec. 4. We summar-
ize our contributions, discuss limitations, and provide future
research directions in Sec. 5.

2 Technical Background
In this section, we review GP modeling and EP since they are the

backbones of our approach. We also discuss some of their limita-
tions that our approach aims to address.

2.1 Emulation With Gaussian Processes. Let us denote the
output and inputs in the training data by y and
x = x1, x2, . . . , xd[ ]T , respectively, where y ∈ R and x ∈ Rd . For
GP modeling, we assume that the input(s)–output relation is a
single realization of the random process, η(x), given by

η(x) = f (x)β + ξ(x) (1)

where f (x) = f1(x), . . . , fh(x)[ ] are some pre-determined set of bases

(e.g., sin(x1), log(x1+ x2), (x21 + x2), . . .), β = β1, . . . , βh
[ ]T

are

Fig. 1 (a) Extrapolation errors of various emulators: F(x)= x+2 cos(3x) is learned over the interval [−4, 3] and extrapolated
over [−6.5, 6]. In the top panel, SVR (with two different kernels) and RBF are trained with 100 noiseless samples. In the
bottom panel, 5000 noiseless samples are used to train two NNs with either ReLU or sin(.) activations (both NNs have 7
hidden layers and 15 neurons per layer). (b) GP versus EGP: GP and EGP both learn F(x)= x+2 cos(3x) using some
noisy training data (noise variance is 0.25). EGP outperforms ordinary GP not only in extrapolation but also in interpolation.
The prediction interval (PI) provided by EGP in extrapolation is also more accurate than the interval obtained via GP.

Fig. 2 Simplified flowchart of our approach: We begin by learn-
ing an ordinary GP, i.e., one without any parametric bases. A
large dataset is then generated with this GP and used in EP to
find some bases. We analyze these bases and select the most
fitting ones. Afterwards, we retrain the GP while using the
selected bases. This iterative process is continued until the con-
vergence criterion is met.
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unknown coefficients, and ξ(x) is a zero-mean GP. ξ(x) is
completely characterized by its co-variance function, cov( · , · ),
defined as

cov(ξ(x), ξ(x′)) = c(x, x′) = σ2r(x, x′) (2)

where σ2 is the process variance and r( · , · ) is the correlation func-
tion. Many parametric correlation functions have been developed
for GPs [4,5,7,9,24,35–37] with the Gaussian correlation function
being the most commonly used one:

r(x, x′) = exp −
∑d
i=1

10ωi (xi − x′i)
2

( )
(3)

where ω = ω1, . . . , ωd[ ]T ,−∞<ωi <∞ are the roughness or scale
parameters (in practice the ranges are limited to −10 <ωi < 6 to
avoid numerical errors). The collection of σ2 and ω is called the
hyper-parameters of ξ(x). Following the assumption in Eq. (1)
and given the n training pairs of (x(i), y(i)), GP emulation requires
finding a point estimate for β, ω, and σ2 via either MLE or cross-
validation (CV). Alternatively, Bayes’ rule can be employed to
find the posterior distributions if some prior knowledge on these
parameters is available. In this paper, the MLE approach is
employed as it provides a high predictive power while minimizing
the computational costs [24,35,38–41].
The MLE estimates of β, ω, and σ2 maximize the likelihood of

the n training data being generated by η(x), that is,

β̂, σ̂2, ω̂
[ ]

= argmax
β, σ2 , ω

∣ 2πσ2R ∣−
1
2

× exp
−(y − Fβ)T (σ2R)−1(y − Fβ)

2

( )
which can also be written as

β̂, σ̂2, ω̂
[ ]

= argmin
β, σ2 , ω

n

2
log (σ2) +

1
2
log ( ∣ R ∣ )

+
1
2σ2

(y − Fβ)TR−1(y − Fβ) (4)

where log(·) is the natural logarithm, | · | indicates the determinant

operator, y = y(1), . . . , y(n)
[ ]T

is the n× 1 vector of outputs in the
training data, R is the n× n correlation matrix with (i, j)th element
Rij = r(x(i), x(j)) for i, j = 1, . . . , n, and F is the n× h matrix with
(k, l )th element Fkl = fl(x(k)) for k = 1, . . . , n and l = 1, . . . , h. The
point estimates of β and σ2 can be represented as a function of ω
by setting the partial derivative of Eq. (4) to zero:

β̂ = FTR−1F
[ ]−1

FTR−1y
[ ]

(5)

σ̂2 =
1
n
(y − F̂β)TR−1(y − F̂β) (6)

Plugging these estimates in Eq. (4) and eliminating the constants
results in

ω̂ = argmin
ω

n log (σ̂2) + log ( ∣ R ∣ ) = argmin
ω

L (7)

By numerically minimizing L in Eq. (7) one can find ω̂ and, sub-

sequently, obtain β̂ and σ̂2 using Eqs. (5) and (6). Many heuristic
global optimization methods such as genetic algorithms [42],
pattern searches [43,44], and particle swarm optimization [45]
have been previously employed to solve Eq. (7). However,
gradient-based optimization techniques are commonly preferred
due to their ease of implementation and superior computational effi-
ciency [3,35,46]. To guarantee global optimality in this case, the
optimization is done numerous times with different initial
guesses. Upon completion of MLE, the following closed-form

formula can be used to predict the response at any x∗:

E(y∗) = f (x∗ )̂β + gT (x∗)V−1(y − F̂β) (8)

where E denotes expectation, f (x∗) = f1(x∗), . . . , fh(x∗)[ ] are the
parametric bases functions evaluated at x∗, g(x∗) is an n× 1

vector where the ith element is c(x(i), x∗) = σ̂2r(x(i), x∗), and V is
the covariance matrix where the (i, j)th element is σ̂2r(x(i), x(j)).
The posterior covariance between the responses at the two inputs
x∗ and x′ reads:

cov(y∗, y′) = c(x∗, x′) − gT (x∗)V−1g(x′)

+ h(x∗)T (FTV−1F)−1h(x′) (9)

where h(x) = f T (x) − FTV−1g(x). Equation (8) clearly demon-
strates the reversion to the mean property of GPs in extrapolation:
As the Euclidean distance between x∗ and the training data
increases, the elements of g(x∗) approach zero. When g(x∗) ≈ 0,

the posterior mean only depends on f (x∗ )̂β. Thus, if an incorrect
or incomplete set of bases is used in training, a GP returns inaccu-
rate predictions when extrapolating. Finally, we note that GPs can
address noise and smooth the data (i.e., avoid over-fitting) via the
so-called nugget or jitter parameter, δ. To this end, R is replaced
with

Rδ = R + δIn×n (10)

If δ is used, the estimated (stationary) noise variance in the data

is δσ̂2.

2.2 Evolutionary Programming. Biological structures that
are more successful in grappling with their environment (i.e., they
are fitter) survive and reproduce at a higher rate. In other words,
over time, the fitness of a living individual begets its structure
through natural selection, genetic crossover, and mutation. Realiz-
ing computer models as complex structures, many scholars have
applied the notion of evolution to programming. This perspective
on computer modeling has fathered an active field of research
known as EP. The terms genetic programming [47,48], inverse
system identification [15], grammatical evolution [17], symbolic
regression [33], and structure learning [49] embody similar lines
of research.
Since the early 1990s, EP and its many variants have been exer-

cised to find a symbolic relation between the input(s) and output of a
training dataset. As illustrated in Fig. 3, the essential idea behind EP
is to first build from a selected pool of functions and operators an
initial population of simple solutions known as individuals or can-
didates. Then, these solutions are iteratively evolved by mutation
and crossover operations to create more complex individuals that
hopefully better relate the inputs and output based on some prede-
fined criterion. This process is continued until convergence when
the desired individuals are returned. EP usually optimizes the
fitness of the individuals but multiple criteria can be optimized at
the same time by means of a Pareto frontier (see Sec. 3.2).
Koza provided the first systematic approach for using EP in

symbolic regression and robot planning. In his paper [47], Koza
models potential solutions to these problems as trees where
nodes host primitive operations and functions while leaves store vari-
ables. In his approach, new solutions are found by combining these
trees together and randomly changing parts of them until at least one
of them can faithfully learn the data. Since Koza’s seminal work, EP
and its many variants have been successfully used in many complex
problems. A particularly active application has been symbolic regres-
sion where EP is used to automatically find the governing equations
of simple mechanical systems [15,16,27,28,30,33,50].
We conclude this subsection with two important notes. First, EP

is fundamentally different than sparse regression [14,26,29,
30,51,52]. While in EP, the input–output relation is discovered; in
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sparse regression, a specific functional form is assumed and the data
are used to estimate the parameters of that functional form. Second,
applications of EP have been primarily limited to problems of low
dimensionality/complexity since EP tends to overfit the data by gen-
erating extremely complicated expressions. Although regularization
alleviates this issue, the proposed penalty functions have been
mostly ad hoc.

3 Evolutionary Gaussian Processes
The algorithmic principles behind EGP are motivated by the pos-

terior mean in Eq. (8). To improve the predictive power of this pos-
terior (especially in extrapolation) a set of free-form parametric
mean functions, f (x), can be learned. Hence, we design a data-
driven framework to train a GP while simultaneously searching
for some f (x) that capture the trend of the data over the training
domain reasonably well. To find these f (x), we use EP to search
the space of parametric functions spanned by polynomials of arbi-
trary degree, trigonometric functions, exp(x), log(x),…, and combi-
nations thereof.

Figure 4 illustrates the mechanics of EGP which, in essence, is a
systematic integration of GP and EP. Our framework is iterative
(reasons to be discussed) and includes data-driven measures
(inspired by the MLE and bootstrap sampling) that vet the bases
found by EP.
Given a noisy and/or sparse dataset, we start the first iteration by

fitting an ordinary GP, and computing and storing the iteration’s
convergence parameter (α1). The computation procedures and moti-
vations for the convergence parameter αi are detailed in Sec. 3.1).
Then, we use this GP to generate a new training dataset for EP.
This new data have ⌊μ × n⌋ samples (μ ∈ R and μ≥ 1) and are gen-
erated via Sobol sequence [53,54] over the same domain as the orig-
inal data. They are better suited for EP since GP reduces noise and
can generate as many data points as EP needs.
We then use EP for multi-objective symbolic regression to find

a Pareto frontier of candidate solutions (Gi(x)) that optimizes for
both fitness (mean absolute error, MAE) and complexity (for
more details see Sec. 3.2). Next, we decompose each Gi(x) into
its components or bases [gi1(x), . . . , g

i
q(x)] which are defined as

its individual additive terms (excluding the coefficients and the
constants). For instance, the bases in the candidate Gi(x) = x1 +

Fig. 3 Symbolic regression via evolutionary programming: A pool of functions and operators is preinitialized. Then,
random combinations of these functions are used to initiate a population of individuals. At each iteration, these individuals
undergomutation and crossover operations to produce individuals with higher fitness over the next generations. This evo-
lutionary process is continued until convergence where a Pareto frontier of fitness versus complexity is obtained.

Fig. 4 Detailed flowchart of EGP: We use the initial training data to fit a GP whose mean function is composed of the para-
metric functions stored in the discovered bases (DBs) repository. We then generate training data for EP via this GP such
that the effect of DBs is excluded. We decompose the candidate solutions discovered by EP into their primitive bases,
remove linear dependencies, and analyze their robustness via several trainings on bootstrapped sets. We select the
best candidate and append its linearly independent bases to the DBs. We retrain the GP with the updated DBs and
check for convergence.

111703-4 / Vol. 143, NOVEMBER 2021 Transactions of the ASME



x2(x3 + 2)+ 1 are [gi1(x), g
i
2(x), g

i
3(x)] = x1, x2, x2x3[ ]). As

explained below, this decomposition strategy is adopted to allow
for not only removing redundant bases (that EP overfits to the
data) but also refining the coefficient of the informative bases that
capture the trend of the data.
To remove redundant bases inGi(x), we use SVD to eliminate the

linearly dependent ones since they adversely affect the numerical
stability of the ensuing steps that involve GP (if a set of linearly
dependent bases are used in GP modeling, the FTR−1F term in
Eq. (5) will not be invertible). Our SVD analysis is performed iter-
atively on the F matrix, which we build using the original training
data and the bases. If dependencies are detected (i.e., the minimum
singular value is below a threshold T), the most complex component
is removed. This process is repeated until the set of bases is free
from linear dependencies. Once the linearly independent bases of
Gi(x) are determined, we use them to calculate the global coefficient
of variation (GCoV, detailed in Sec. 3.3) of Gi(x). The candidate
with the smallest GCoV is then selected and its linearly independent
bases are temporarily included in the repository of DBs. Finally, we
use the stored basis in the DBs and the original training data to train
a GP and calculate α2. α2 is compared to α1 and the result used as
the convergence criterion (detailed in Sec. 3.1). If α2 < γα1, with γ∈
(0, 1), the bases are permanently appended to the DBs repository
and the algorithm progresses to the next iterations and continues
until this convergence criterion is met. If α2 >= γα1, the iteration
is repeated and if the convergence parameter does not improve in
this second trial, the algorithm is terminated.
Iterations two, three, … differ from the first one in two major

aspects. First, the following equation is used to generate training
data for EP:

y∗(x∗) = y∗GP(x
∗) − f (x∗ )̂β

where f and β̂ are, respectively, all the bases from the DBs reposi-
tory and its corresponding coefficients estimated via MLE. This
strategy greatly helps EGP in that the evolutionary process no
longer needs to discover what is learned in the previous iterations.
The second major difference is that all the bases in the DBs reposi-
tory are also included in the SVD analyses to prevent the addition of
bases to the repository that are linearly dependent with the available
ones. It is noted that to prevent forgetting what the algorithm has
already learned, the SVD analyses of iteration i never eliminate
the bases discovered in the previous iterations, no matter the
complexity.

3.1 Convergence Criterion. The convergence parameterαi, for
a particular iteration i, ensures that the updates on the DBs after the

iteration increase the predictive power of EGP (especially in extrapo-
lation). αi is calculated as follows. First, the original training dataset is
divided into twomutually exclusive and collectively exhaustive parts:
an interpolation set that encompasses80%of the interior of the training
domain (e.g. if x∈ [0, 1], the interpolation set is x∈ [0.1, 0.9]) and an
extrapolation set that includes the rest of data in the training domain.
Then, a GP with the bases from DBs repository (if any) is fitted to
the interpolation set and used to calculateαiwhich is themean-squared
error (MSE) in the extrapolation set.
The value of αi across two consecutive iterations governs conver-

gence. In particular, EGP converges in iteration i> 1 if αi+1≥ γαi

with γ∈ (0, 1), i.e., if the updates of the DBs in iteration i+ 1 incor-
rectly model the data or do not sufficiently increase the accuracy.

3.2 Historical Pareto Frontier. EP optimizes for both com-
plexity and fitness (i.e., MAE) which are generally opposing objec-
tives. That is, complex candidate solutions or individuals are
unfavorable but they tend to have better fitness values. As a
result, EP builds a Pareto frontier of individuals who indicate the
fittest candidate for any complexity, see Fig. 5. The complexity of
a candidate solution is calculated by summing the complexity
numbers assigned to its entailed operations: Simple operations (+,
−, × ) have complexity 1, division has complexity 2, and functions
(e.g., trigonometric, exponential, logarithm,…) have complexity 3.
The Pareto frontier is usually built with the individuals of the last

generation. However, our studies on EP indicate that these individ-
uals do not necessarily provide the optimum compromise between
fitness and complexity. This is because EP either achieves local
optimality or overfits the noise that GP has failed to filter out. To
address this issue, we track all the individuals generated during
the entire evolution process (regardless of the population or gener-
ation number) and build the historical Pareto frontier.

3.3 Global Coefficient of Variation. The candidates obtained
via EP generally overfit the data even though we use the historical
Pareto frontier, filter out noise with GP, and learn them iteratively.
To address this issue, we calculate the GCoV for each candidate.
GCoV is inspired by MLE and bootstrap sampling and measures
the robustness of the coefficients of a candidate’s bases to variations
in the training data. The candidate whose linearly independent bases
are more robust has a smaller GCoV and is selected over other
candidates.
To obtain GCoV for the candidate solutions, we first bootstrap

the initial data to generate b datasets of size n′ < n where n is the
size of the initial data. Then, for Gi(x) with l linearly independent
bases, we use the following equation to calculate the CoVs for

Fig. 5 Example of historical Pareto frontier: EGP emulates the function F(x)= x+2 cos(3x) using some noisy training data.
The individual candidates comprising this historical Pareto frontier are obtained by EP in the first iteration of EGP.
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the coefficients of its bases:

CoVj =
std(β1j , . . . , β

b
j )

mean(β1j , . . . , β
b
j )
, j = 1, . . . , l

where βkj is the coefficient of basis j when the set k is used in MLE.
The MLE process involves fitting a GP using the l linearly indepen-
dent bases of the candidate and the n bases currently found in the
DBs repository as parametric mean functions. Once these CoVs
are calculated, we determine the GCoV of the corresponding candi-
date via penalized weighted averaging., i.e.,

GCoV =

∑l
j=1 (CoVj)p

lq

where p and lq penalize (i.e., increase) the GCoV of a candidate if it
has unstable coefficients or too many bases, respectively.

3.4 Discussions. The underlying assumption behind EGP is
that there are some free-form parametric bases that can model the
data source reasonably well. As a result, if we can discover these
bases via some training data and use them in GP modeling, we
can build GPs that outperform ordinary GPs in extrapolation, inter-
polation, and regression. If this assumption is incorrect (or EGP
fails to find bases that explain the data well), the output of our algo-
rithm would be an ordinary GP.
As we show in Sec. 4.1, another potential advantage of EGP over

other GP modeling approaches is increased numerical stability. We
can quantify this advantage by analyzing the smallest eigenvalue of
Ropt = Rδ(ω = ω̂). In the extreme case where f (x)̂β completely
explains the data, ξ(x) in Eq. (1) models either the noise (i.e., the
data is noisy and f (x)̂β regresses the data) or a random process
that is zero everywhere (i.e., the data does not have noise and
f (x)̂β interpolates the data). In either of these scenarios, ω̂i ≪ 0
(if the nugget is used correctly in the optimization [35]), and

hence, Rδ = R + δIn×n ≈ 1n×n + δIn×n, which is well-conditioned
as the smallest eigenvalue is 1+ δ.
In most problems, the extreme case considered above is not

observed, and hence, R ≠ 1n×n. Since R is positive-definite, the
smallest eigenvalue of Ropt = Rδ(ω = ω̂) = R(ω = ω̂) + δIn×n is
close to δ and thus Ropt is again well-conditioned. It is also noted
that our SVD analyses ensure that the term FTR−1F is of full
rank and hence invertible.
Lastly, we point out that while the goal of EGP is not symbolic

regression, it can be used for that purpose. We demonstrate this
capability of EGP in Appendix B.

4 Results
In this section, we compare the performance of EGP in interpo-

lation and extrapolation against ordinary GP and EP. In Sec. 4.1,
we compare them using eight analytical examples that include dif-
ferent dimensions and noise levels. We also use these examples to
demonstrate the superior numerical stability of EGP over ordinary
GP. In Sec. 4.2, we apply these three emulation techniques to an
engineering problem where very limited prior knowledge on the
functional form of the response is available.
In all examples, the following parameters are selected for EGP:

μ = 1.5, γ= 0.9, T= 10−4, n′ = 1
3 × n, b= 10, p= 3, and q= 0.7.

The rationales behind these choices are explained in Appendix A.
We use the algorithm described in Ref. [35] for GP modeling

which employs an adaptive mechanism to estimate the nugget var-
iance. For symbolic regression, we use Eureqa [33] which is a
highly sophisticated implementation of EP. In all of our studies,
the convergence criterion of Eureqa is based on the stagnation of
MAE across the candidates. We note that many aspects of EP
(e.g., population size, crossover rate, and mutation rate) are inter-
nally determined in Eureqa and cannot be manually tuned.

4.1 Analytical Functions. The analytical functions we study
are shown in Table 1. Many of them are relatively high dimensional

Table 1 Analytical examples: The functions posses different dimensionality, complexity, and ranges

ID Function Min(x) Max(x)
Mean

range (y)

1 y(x)= 943.61(x1− 2.8)2+ 409.40 (x2− 2.0941)2

+ 4.15(1 − cos (2x3)) + 3.28

(
3.46
x4

)3

−

(
3.46
x4

)2
⎛⎝ ⎞⎠

[2.12, 0.85, 0, 2] [4.32, 3.35, 3.14, 7] 2602

2 y(x) = x37 − x5 + 0.2x7x3x1 + 4x6 − x2x3 + x1 − x2
+ 15 sin(2x1)− 10 cos(x3)− 5

[−4.5,−6, 1,−3,−3,
−2.5,−3.5]

[3.5, 2, 6, 4, 2, 3.5, 4.5] 188

3 y(x) = 2 sin (x1) − 3 cos (x2) + x1 + x22 [− 3,− 5] [2, 2] 36

4 y(x) = x21 +
x1

2x2 − 1
+

�
(

√
2)x3x4 + 2.3e−x5 +

�
(

√
x2) [− 3, 0.54,− 2,− 3,− 4.5] [3.5, 4.54, 3, 1, 0.5] 219.97

5 y(x) = (4 − 2.1x21 +
x41
3
)x21 + x1x2 + 4x42 − 4x22 [− 2,− 1] [2, 1] 5.58

6 y(x) = log (|x3|)x1 + 3.2 tan (x1) +
���������|x2 + 3|√

[− 1.2,− 2, 0.7] [1.2,+4, 5] 19.6

7 y(x) =
2πx1(x2 − x3)(

log
x4
x5

( )(
1 +

x1
x6

+
2x1x7

log(x4/x5)x
2
5x

2
8

) [63070, 990, 700, 100, 0.05,
63.1, 1120, 9855]

[115600, 1110, 820, 50000,
0.15, 116, 1680, 12045]

223

8 y(x) =
(
exp (−(x2 − 1)2) + exp (−0.8(x2 + 1)2) −0.05 sin (8(x2 +

0.1))
)

(
exp (−(x1 − 1)2) + exp (−0.8(x1 + 1)2) − 0.05 sin (8(x1 + 0.1))

)
[−3,−3] [3, 3] 1.11

Note: The average range of each function is calculated using multiple training sets that are generated over the input space.
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functions and include terms that possess asymptotic behavior, have
a high-frequency, or contain nested functions. Each function is
emulated under two different scenarios where the training data are
corrupted by a Gaussian noise with either a small or large noise var-
iance, see Table 2. The noise variances are selected based on the
function range (see the last column in Table 1) where a small
(large) noise variance corrupts the response by up to 1% (10%).
Sobol sequence [53,54] is used to generate the training and vali-

dation data. The size of the training dataset is 50 ×Dim where Dim
indicates the dimensionality of the underlying function. The valida-
tion dataset for each case is corrupted by noise as well and com-
prises two mutually exclusive parts designed to assess the
interpolation and extrapolation capabilities of GP, EP, and EGP.
The interpolation error of each emulator is calculated over the train-
ing domain. However, the extrapolation error is measured over a
domain that excludes the training region and its bounds are obtained
by expanding min(x) and max(x) in Table 1 by 40%, unless the
function loses continuty. For instance, if the training range is [0,
1], the interpolation and extrapolation errors are calculated over,
respectively, [0, 1] and [−0.2, 1.2] ranges and if the function pre-
sents a discontinuty at −0.1, the extrapolation ranges become
(−0.1, 1.2]. Errors are quantified via normalized root mean
squared error (NRMSE) using 500 ×Dim samples. To account for

sample-to-sample variations, the training-validation process is
repeated five times. Lastly, in example 3, trigonometric functions
are intentionally excluded from the primitive function set of EP.

4.1.1 Results. Figure 6 summarizes the results for the cases
where the noise variance is small. Interpolation-wise, EGP outper-
forms EP across all our cases except for example 6 where EP results
in slightly less variations across the repetitions. When comparing
EGP to ordinary GP, two trends are observed. In examples where
some bases are discovered by our algorithm (IDs 1,2,4,5,6), EGP
achieves smaller interpolation errors than GP. In examples where
no bases are discovered (IDs 3,7,8), the performance of EGP and
GP is identical.
The primary advantage of EGP is observed in extrapolation (see

Fig. 6). In examples 1, 2, 5, and 6where some adequate bases are dis-
covered, the extrapolation capability of EGP is more than EP and
ordinary GP. This higher accuracy is because EGP (i) does not
suffer from reversion to the mean as much as ordinary GP does
and (ii) has multiple mechanisms (unlike a standalone EP software
such as Eureqa) that exclude bases which incorrectly capture the
trend of the data. In example 4, although some adequate bases are dis-
covered, the extrapolation performance is not improved. This is
because the base x1

2x2−1, which has a large asymptotic behavior on
the training domain, is not properly learned. In examples 3, 7, and
8 where no bases are included in EGP, the performance is still
better than EP (by avoiding overfitting) but similar to ordinary GP.
We note that in one of the repetitions of example 7 (which is
highly complex) an incorrect basis is accepted, and hence, the perfor-
mance variability of EGP is more than GP (compare the height of the
corresponding box plots)
Figure 7 summarizes the results for the cases where the noise var-

iance is large. The observations are largely consistent with those
reported in Fig. 6 with the exception of example 7. In this
example, EP discovers some bases that capture part of the trend
of the data in extrapolation and hence achieves smaller errors
than EGP that excludes these bases as they insufficiently decrease

Table 2 Noise variance in analytical examples: Normal noise is
added to the training data

ID 1 ID 2 ID 3 ID 4 ID 5 ID 6 ID 7 ID 8

Small noise
variance

0.752 12 0.82 12 0.042 0.12 12 0.012

Large noise
variance

2.52 32 32 3.52 0.42 12 32 0.052

Note: For each example, two noise levels are considered (one small and one
large). The range of the function (see the last column of Table 1) is used to
determine the magnitude of the noise variances.

Fig. 6 Performance of EP, GP, and EGP (small noise scenario): Each subplot corresponds to one example and includes
interpolation and extrapolation errors in terms of NRMSE on log scale
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the convergence parameter α. Although tuning α in our algorithm
can increase the performance of EGP in this example, we avoid tai-
loring EGP to specific problems.
With either large or small noise variance, two interesting obser-

vations are made. First, in example 3, where trigonometric functions
are intentionally excluded from the evolutionary search process.
This example is designed to not only resemble applications (such
as the one in Sec. 4.2) where the underlying data source does not

have a closed-form functional form, but also applications where
the underlying physics is not effectively learned (e.g., due to the
failure of the evolutionary search process). In this case, unlike
EP, EGP avoids fitting high-degree polynomials to the data and
hence achieves much better extrapolation accuracy. The second
observation is on the numerical stability of EGP and how it com-
pares to ordinary GP. Figure 8 quantifies the variations of smallest
eigenvalue of Ropt in all of our studies and indicates that whenever
some bases are discovered by EGP (examples 1, 2, 4, 5, and 6), this
measure and thus the numerical stability are higher.

4.2 Extrapolation for Material Modeling. In most real-
world applications, the symbolic relation between the independent
and dependent variables in a dataset is unknown. To study how
our algorithm performs in these scenarios, we use EGP to learn
the constitutive law of a 2D heterogeneous composite. The matrix
material of the composite is a soft compressible elastomer
modeled by the Arruda Boyce [55] hyperelastic constitutive
model. The composite reinforcements are randomly distributed

Fig. 7 Performance of EP, GP, and EGP (large noise scenario): Each subplot corresponds to one example and includes
interpolation and extrapolation errors in terms of NRMSE on log scale.

Fig. 8 Numerical stability of EGP versus ordinary GP: The left (right) panel indicates the distribution of the smallest eigen-
value of Ropt across the eight examples when training data are corrupted by a Gaussian noise with small (large) variance.

Table 3 Performance of GP, EGP, and EP in the engineering
example: MSE results of EP, GP and EGP on the different sets

Training error Interpolation error Extrapolation error

EP 27.08 48.66 169.18
GP 1.69e-05 0.185 92.73
EGP 1.28e-05 0.139 56.08

Note: The response range in the original training domain is 383.74.
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elliptical particles that are modeled as compressible Neo-Hookean
elastomers (see more details in Refs. [56,57]). The constitutive
law of our composite microstructure is unknown, and thus, numer-
ical methods such as the finite element method (FEM) are required
to find its response (i.e., the stored potential) to any applied strains.
The high computational costs of FEM hinder multiscale simulations
where the fine-scale behavior is governed by this microstructure.
One solution for decreasing the costs is to replace FEM with a

surrogate as follows. A training dataset is first built by computing
(via FEM) the stored potential in the microstructure under various
strain states. Then, an emulator is fitted to this dataset to serve as
the constitutive law of the microstructure.
Our dataset has 1000 samples and its inputs and output are,

respectively, Green strains (ϵ1, ϵ2, ϵ3), and the stored deformation
potential (ϕ) [mJ/mm3]. The data has a small amount of noise
which is primarily due to numerical instabilities, excessive mesh

Fig. 9 Materials modeling with GP, EGP, and EP: ϵ1, ϵ2, and ϵ3 are Green strains and ϕ is the stored potential in
the composite microstructure. The prediction domain is larger than the training domain which is {(ϵ1, ϵ2, ϵ3) ∈
R3 ∣ −0.085 ≤ ϵ1, ϵ2 ≤ 1.275;− 0.34 ≤ ϵ3 ≤ 0.34}.
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distortion, and round off errors experienced in FEM (see Ref. [57]
for more technical details). It is important to note that in this
problem, obtaining samples that entail large deformations (i.e.,
large strains) takes much longer than samples that undergo small
deformations. Hence, we are particularly interested in building an
emulator that can predict the stored potential at large deformations
using training data on small deformations.
We divide our dataset into three mutually exclusive and collec-

tively exhaustive sets for training, interpolation testing, and extrap-
olation testing. The original domain sampled with FEM is
{(ϵ1, ϵ2, ϵ3) ∈ R3 ∣ −0.1 ≤ ϵ1, ϵ2 ≤ 1.5; −0.4 ≤ ϵ3 ≤ 0.4}. For
training and interpolation test sets, we select 85% of the original
domain, i.e., {(ϵ1, ϵ2, ϵ3) ∈ R3 ∣ −0.085 ≤ ϵ1, ϵ2 ≤ 1.275; −
0.34 ≤ ϵ3 ≤ 0.34}. This domain contains 616 data points. 75% of
these data points (i.e., 462 samples) are randomly selected and
used for training while the remaining 25% (i.e., 154 samples) are
employed to obtain the interpolation accuracy. Data points that
lay outside of this new domain (i.e., 1000− 616= 384 samples)
comprise the extrapolation set.
We fit three emulators to the training set via ordinary GP, EP, and

EGP and predict the stored potential in the other two sets. As there is
no prior knowledge on the underlying expression, we select the fol-
lowing primitive functions for symbolic regression in both EP and
EGP: simple operations (±, × ), division, and exponential function.
To compare the three emulators we use (i) MSE associated with

interpolation and extrapolation test sets and (ii) the physical con-
straints that the emulators should satisfy: since they predict a
stored potential, the emulators should be convex and also satisfy
ϕ(0, 0, 0)= 0 [58].
Table 3 summarizes the MSE results and indicates that EGP out-

performs ordinary GP and EP in all cases. As for the physical con-
straints, the predicted stored potential at zero-deformation are ϕ(0,
0, 0)EP= 6.71, ϕ(0, 0, 0)GP= 0.0027, and ϕ(0, 0, 0)EGP= 0.0021
which show that EGP is more accurate. The constraint on con-
vexity is evaluated by visually comparing the response surface of
each emulator over the region {(ϵ1, ϵ2, ϵ3) ∈ R3 ∣ −1 ≤ ϵ1, ϵ2 ≤
3; −0.5 ≤ ϵ3 ≤ 0.5} which is much larger than the original
domain. The response surfaces are plotted in Fig. 9 and demonstrate
that EGP neither fluctuates (unlike EP) nor regresses to the mean
(unlike ordinary GP).

5 Conclusions
In this paper, we introduced EGP which leverages EP to build a

GP model with automatically discovered symbolic bases. We tested
the performance of EGP against ordinary GP and EP using some
analytical functions as well as an engineering problem on learning
the constitutive law of a heterogeneous microstructure. The analyt-
ical examples showed that, when our algorithm discovers bases that
can explain the data reasonably well, EGP achieves lower extrapo-
lation errors, is more numerically robust, and performs better in
interpolation/regression. In the engineering example on materials
modeling, EGP produced an emulator that better satisfies the phys-
ical constraints.

While we believe the primary advantages of EGP are realized in
engineering problems where the underlying relation between the
inputs and outputs are unknown, our studies on the analytical exam-
ples indicated the following three limitations. First, the computational
cost of training an EGP is higher than that of an ordinary GP. The
additional cost is unfavorable if our algorithm results in an ordinary
GP which happens when the underlying assumptions do not hold or
when EP does not discover any informative bases. In this case, the
output of EGP is an ordinary GP, but several expensive computations
are performed that add no performance improvement compared to an
ordinary GP. The second limitation is on interfacing with Eureqa
which we use for symbolic regression. Eureqa is not open-source
and hence each iteration of our algorithm involves (i) manual copy-
pasting of the GP-generated data set into Eureqa and (ii) writing sub-
routines that automatically convert the results of Eureqa into PYTHON-
readable objects. While EGP generally converges in a few iterations,
the manual data transfer is tedious and prone to error. We have tried
open-source symbolic regression packages such as DEAP [48] which
can be easily integrated with our codes. However, the symbolic
regression power of Eureqa far exceeds other available packages
and thus we used Eureqa in our approach. The third limitation
arises when the discovered bases regress the data very well which
results in over confident extrapolation so the PI for the extrapolation
match the predictions, see Fig. 10.
Future research directions include extension to mixed-variable

problems that include qualitative and quantitative inputs, improving
interpolation/regression capabilities of GPs without the need for
improving their extrapolation power, implementing an in-house
symbolic regression package that can effectively interface with
the rest of our algorithm in PYTHON, and extensions to handle very
large [59,60] or high-dimensional [61] datasets.
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Appendix A: Selection of the EGP Parameters
The performance of EGP depends on μ, γ, n′, T, b, p, and q. In this

section, we specify the parameter choice used for all the examples in
Sec. 4 and discuss the rationales behind them so inexperienced users
can adapt them to their problems.
We use μ= 1.5 to generate a denser dataset for EP which helps it

in finding informative bases. We discourage the use of μ≫ 1 as
computational costs would increase, and the symbolic regression
could overfit. γ= 0.9 is used to account for a minimum amount of
improvement after each iteration. With a γ too close to one,
highly complex bases will be accepted in the DBs repository.
With γ< 0.9, it will be difficult to regress the least relevant terms
correctly. Taking this into account, we recommend selecting γ
based on the data configuration. In a low noise and dense dataset,
where overfitting is not an issue as the noise will be properly filtered
by the GP, we advise using a γ closer to 1. Otherwise, the user
should be conservative on the selection of γ.
The choice for n′ and T is related. We use n′ = 1

3 × n while boot-
strapping to allow for variations to be developed while having a
decent number of samples. With very small bootstrapped sets,
high variations will be observed across the sets but robustness
(numerical stability) decreases. So, we select T= 10−4 to avoid
any numerical issues while training the GPs. Significantly denser
(sparser) datasets than those used in the examples would require a
lower (higher) value of n′ while T can remain the same. In highly
complex data, where linear dependencies between the bases are
unlikely, a smaller value for T can be selected.

Fig. 10 Over confident extrapolations with EGP: The monthly
mean CO2 concentration of Mauna Loa, Hawai, is learned and
extrapolated. The uncertainties in extrapolation are smaller that
10−4.
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We use b= 10 to assess the sensitivity of the individual CoVs
robustly. A higher value of b will be computationally expensive,
but we encourage the user to increase it if the time and the computa-
tional power are not a constraint. We select p= 3 to penalize candi-
dates with unstable bases whose CoV is high. When using a larger
value of p, no improvements are usually observed. Finally, with q
= 0.7, we penalize large, overfitting candidates. On the examples
studied with q≥ 1, the linear independent bases of the overfitting
candidates were usually accepted while with q< 0.5 single base can-
didates, which were not part of the true expression, were accepted.
We recommend the inexperienced user to use the suggested defaults.

Appendix B: Symbolic Regression With Evolutionary
Gaussian Process
While the goal of EGP is not symbolic regression, it can be

used for that purpose. We illustrate this by comparing the discov-
ered symbolic regressions from EGP (final components of the

DBs repository) with the bases that Eureqa finds in examples 1,
3, and 7 (see Table 4).
In example 1, the EP emulator (from Eureqa) includes a wide

variety of incorrect bases (x3, x43, x4) while EGP does not. EGP gen-
erally includes the term 1

x4
which, while not part of the underlying

expression, better captures the trend than x4 (term usually included
by EP). Similar results are observed in examples 2, 4, 5, and 6.
In example 3, the trigonometric functions are intentionally

excluded from the primitive pool of functions when the evolution-
ary search process is conducted. As a result, EP tries to interpolate
these trigonometric functions with high degree polynomial terms,
which adversely affect extrapolation. EGP, however, detects that
these terms are not part of the true underlying analytical function
and discards them.
In example 7, the underlying expression is highly complex and

the evolutionary search incorrectly finds simple terms. Most of
these simple terms are excluded in the results of EGP as they
cannot extrapolate. However, EP generally includes many incorrect
bases in the final results. Similar results are observed in example 8.

Table 4 Regressed terms with EGP for the analytical examples

Terms

Method x21 x1 x22 x2 cos(2x3)
1

x24

1

x34

False terms
(percentage of appearance %)

EGP Small noise 100% 100% 100% 100% 100% 40% 0% x4 (20%),
1
x4

(60%)

EGP Large noise 100% 100% 100% 100% 80% 40% 0% x4 (20%), x24 (20%)
EP Small noise 100% 100% 100% 100% 40% 40% 0% x3(40%), x23 (40%) x4 (80%)
EP Large noise 100% 100% 100% 100% 40% 40% 0% x3(40%), x23 (40%) x4 (80%)

Terms

Method sin(x1) cos(x2) x1 x22 False terms (percentage of appearance %)

EGP Small noise 0% 0% 0% 0% −
EGP Large noise 0% 0% 0% 0% −
EP Small noise 0% 0% 100% 100% x62(20%), x42(60%), x31(100%),

1
x2
(20%), x52(40%),

x32(40%), x2(60%), x21(20%), x2x21(20%), x2x1(40%)

EP High noise 0% 0% 100% 100% x32(40%), x1x22(20%), x2(40%), x31(40%),
1
x2
(20%),

x2
x1
(20%), x52(40%),

x21x2(20%), x21(20%),
1

1.901x1 − 0.389
(20%), x42(20%), x22(20%), x1x2(20%), x2x41(20%)

Terms

Method a b False terms (percentage of appearance %)

EGP Small noise 0% 0% x2x25(20%), x3x25(20%), x7x25(20%), x8x25(20%)
EGP Large noise 0% 0% −

EP Small noise 0% 0% x2x25(40%), x8x22x
2
5(20%), x8x23x

2
5(20%), x7x22x

2
5(40%), x2x5x8(40%), x22x

2
5(40%), x23x

2
7(40%),

x8(40%) x5x7x23(40%), x4(20%), sin (126 x4)(20%), x2x3x8x25(20%), x1x6(20%)

EP Large noise 0% 0%
x8x42x

2
5

x7x33
(20%),

1

x7x33
(20%), x2x5x8(20%), x23x

2
7(20%), x8(20%), x5x7x23(20%), x5(20%), x8x22x

2
5(20%),

x3x5(20%), x2x25(40%), x3x7x8x25(20%), x8x25(40%), x7x25(20%), x3x25(40%),
x22x

2
5

x7
(20%), x22x

2
5(20%)

Note: From top to bottom, the tables show the symbolic regression results for examples 1, 3, and 7. For each true term, the tables include the percentage of
appearance of it across the five different fits. The last column shows the regressed terms that are not part of the true underlying function and its percentage of

appearance. a = x1x3 log x4
x5

( )
1 + x1

x6
+ 2x1x7

log x4/x5( ) x25x28
( )( )−1

, b = x1x3 log x4
x5

( )
1 + x1

x6
+ 2x1x7

log x4/x5( ) x25x28
( )( )−1

.
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