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Abstract

Woven fiber composites have been increasingly employed as light-weight materials in aerospace, construction, and transporta-
tion industries due to their superior properties. These materials possess a hierarchical structure that necessitates the use of multiscale
simulations in their modeling. To account for the inherent uncertainty in materials, such simulations must be integrated with
statistical uncertainty quantification (UQ) and propagation (UP) methods. However, limited advancement has been made in this
regard due to the significant computational costs and complexities in modeling spatially correlated structural variations coupled
at different scales. In this work, a non-intrusive approach is proposed for multiscale UQ and UP to address these limitations.
We introduce the top-down sampling method that allows to model non-stationary and continuous (but not differentiable) spatial
variations of uncertainty sources by creating nested random fields (RFs) where the hyperparameters of an ensemble of RFs is
characterized by yet another RF. We employ multi-response Gaussian RFs in top-down sampling and leverage statistical techniques
(such as metamodeling and dimensionality reduction) to address the considerable computational costs of multiscale simulations.
We apply our approach to quantify the uncertainty in a cured woven composite due to spatial variations of yarn angle, fiber volume
fraction, and fiber misalignment angle. Our results indicate that, even in linear analysis, the effect of uncertainty sources on the
material’s response could be significant.
c⃝ 2018 Elsevier B.V. All rights reserved.

Keywords: Uncertainty quantification and propagation; Multiscale simulations; Random fields; Spatial variations; Woven composites

1. Introduction

It is widely accepted that materials are heterogeneous and possess a hierarchical structure where the coarse-
scale behavior is greatly affected by the fine-scale details (i.e., the microstructure). Because the traditional one-
scale continuum mechanics does not suffice to investigate the effect of microstructure on materials’ properties,
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Fig. 1. (Color online) Schematic view of a four-scale woven fiber composite with polymer matrix: In computational modeling of this structure,
each integration point at any scale is a realization of a structure at a finer scale. Due to the delicacy of materials at fine-scales, RVEs at lower scales
may embody more uncertainty than those at higher scales. To quantify the uncertainty in a macroscopic quantity of interest, the relevant uncertainty
sources at the lower scales should be identified for uncertainty propagation.

significant effort has been devoted to the development of multiscale computational models. These models have
provided the means to study the effect of microstructure on many phenomena including damage evolution [1,2],
fracture initiation [3], and strain localization [4].

Uncertainty is inevitably introduced in materials’ behavior starting from the design and constituent selection stages,
through the manufacturing processes, and finally during operation. For this reason, ever-growing research [5–7]
is being conducted to rigorously couple computational models with statistical uncertainty quantification (UQ) and
propagation (UP) methods to provide probabilistic predictions that are in line with the observed stochasticity in
materials.

UQ and UP are actively pursued in various fields of science and engineering [6,8–23]. They are, however, seldom
applied to multiscale simulations due to the significant computational costs and complexities. Our goal is to devise
a non-intrusive UQ and UP approach that characterizes the uncertainties via random fields (RFs) and is applicable
to multiscale simulations where multiple uncertainty sources (including spatial microstructural variations) arise
from different length-scales. We are particularly interested in a non-intrusive approach because not only they are
more general, but also opening multiscale computer models (i.e., changing the formulations) to directly introduce
uncertainty sources into them requires considerable effort.

We take woven fiber composites as our motivating example. Such materials have been increasingly used in
aerospace, construction, and transportation industries due to their superior properties including high strength-to-
weight ratio, non-corrosive behavior [24], enhanced dimensional stability [25], and high impact resistance [26]. Woven
fiber composites possess, as illustrated in Fig. 1, a hierarchical structure that spans multiple length-scales. Macroscale
is at the highest length-scale where the overall mechanical performance under some loading conditions is evaluated
and characteristics such as fiber and yarn (aka tow or bundle) volume fractions, effective properties, and part geometry
are of interest. The individual yarns and their architecture (i.e., their dimension and relative spatial arrangement, see
Fig. 2(a) and (b)) in the laminates are modeled in the mesoscale. The fibers (and their relative position within the
yarns) and the matrix belong to the microscale. Finally, the constituent properties and the interaction between them
(e.g., the interphase) are modeled in the nanoscale.

Multiple uncertainty sources that must be considered in the computational models are introduced at each of
these length-scales [24]. For instance, during the preforming process, the high pressure and flow of the resin or
draping change the local architecture of the fibers [27], see Fig. 2(c). Additionally, processing variations and material
imperfections cause the fiber volume fraction to spatially vary over the part; especially along the yarn path where
there is compact contact [28,29]. These macroscopic uncertainties are manifestations of a multitude of uncertainty
sources that exist at the finer scales where, due to the delicacy of materials, the number and dimensionality of the
uncertainty sources increase [10]. Moving down the scale ladder in Fig. 1, one can observe that the uncertainty
sources are of different nature (e.g., morphological, geometrical, or property related), and spatially (within and across
scales) correlated. These features render the UQ of a macroscopic quantity of interest extremely challenging. It is
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Fig. 2. (Color online) Some possible yarn architectures at the mesoscale for cured woven composites: Computational samples of 2 × 2
(a) non-orthogonal and (b) orthogonal woven fabrics with side measures of 4 yarns in-plane (generated with TexGen [30]). (c) Illustration of
fiber misalignment in woven composites [31]. In these images, the resin is not shown to better demonstrate the yarns.

further noted that macroscopic uncertainty depends heavily on the quantity of interest. For example, the homogenized
response in linear analyses and damage are clearly not equally sensitive to spatial microstructural variations.

To illustrate the various uncertainty sources along with the abovementioned challenges associated with UQ and
UP tasks in multiscale materials we narrow our focus, as depicted in Fig. 3, to two scales from the composite in
Fig. 1. In the finite element (FE) mesh of the mesostructure in Fig. 3, there are over 10 000 integration points (IP’s,
aka Gauss or material points). Each of these points can be thought of as a realization of a sufficiently large structure
(aka representative volume element, RVE) at the next finer scale, i.e., the microscale. A widely-recognized method
for modeling the behavior of such a hierarchical material is through computational homogenization. This method
involves the solution of partial differential equations (PDEs) at both scales where the boundary conditions of the
microscale PDEs are determined at the mesoscale. Once the microscale PDEs are solved, the homogenized stresses
and tangent moduli are passed up to be used in the PDEs at the mesoscale. If the FE method is used in both scales
to solve the boundary value problems, this method is referred to as F E2 [32,33]. Since the F E2 method is generally
very expensive, many recent works have focused on more efficient methods [34–37].

Fig. 3. (Color online) Computational homogenization in a two-scale structure: The boundary values (i.e., the applied strains) at the microscale are
passed down from the mesoscale to the microstructure. Once the boundary value problem (BVP) is solved at the microscale (i.e., the microstructure
is deformed to conform to the applied strain), the homogenized stresses and tangent moduli are passed up to be used in the mesoscale BVP. The
resin is hidden in the mesostructure for a better illustration.

In a deterministic simulation, all the parameters (and their evolution) at the IPs in both scales (related to,
e.g., the material properties, the morphology, or the applied load) are known a priori. In the presence of uncertainty,
however, such parameters may only be characterized statistically. For instance, in the mesoscopic RVE in Fig. 3, the
dimensions and relative arrangement of the yarns, the fiber volume fraction, and material properties (such as Young’s
modulus and Poisson ratio) might vary spatially due to multiple factors such as manufacturing inconsistencies. These
spatial variations across the IPs of the mesostructure imply that the corresponding microstructures are not identical.
More importantly, these mesoscale variations are spatially correlated. For instance, the data reported in [27,28,38]
demonstrate that in unidirectionally reinforced fiber composites (with either metallic or polymeric matrix) not only
the fiber misalignment angles and volume fraction change spatially, but also these changes are negatively correlated
(i.e., high volume fraction implies small misalignment angle and vice versa). Similarly, some of the properties and
parameters at the microstructures might be spatially inhomogeneous. Hence, to quantify the mesoscale uncertainty, the
microscale stochasticity must be quantified, propagated, and finally coupled with uncertainty sources at the mesoscale.

One way to quantify the uncertainty of an effective coarse-scale property (e.g., shear or Young’s moduli), is via
Monte Carlo (MC) sampling where many simulations are conducted to find the distributional characteristics. However,
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MC sampling is practically infeasible in multiscale simulations due to (i) the curse of dimensionality that arises from
the number of IPs (i.e., degrees of freedom), (i i) the nested nature of the uncertainty sources, and (i i i) the high cost
of multiscale simulations. For example, in the two-scale structure in Fig. 3, a single MC sample would consist of:

1. Assigning correlated parameters (morphological, geometrical, property related, and so on) to all the IPs of the
mesostructure.

2. Generating microstructures where each one is consistent with the assigned parameters to the corresponding IP
in the mesoscale.

3. Conducting a multiscale simulation via, e.g., the F E2 method.

As the number of scales and uncertainty sources increase (see Fig. 1), the computational costs of UQ and UP
analyses rapidly increase. More efficient sampling techniques (such as quasi MC, importance sampling, subset
simulation, line sampling, and variants of Latin hypercube sampling [39–41]) suffer from the same issue. Since the
use of multiscale materials in science and engineering is rapidly growing, there is a clear need [6,42] for efficient
methods and frameworks to quantify the coarse-scale uncertainty of such materials as a function of the fine-scale
uncertainties. We believe that our approach paves the path to this end by leveraging the physics of the problem at hand
in addition to the statistical UQ and UP methods. With our approach, fewer simulations could be used to determine
the distributional characteristics.

There has been some work focused on UQ and UP in fibrous composites. Komeili and Milani [24] conducted
a two-level factorial design at the mesoscale to illustrate the sensitivity of orthogonal woven fabrics to the yarn
geometry (including yarn spacing, width, and height) and material properties. They concluded that, based on the
applied load, these parameters could have a significant effect on the effective response (which was taken as the
reaction force). A similar sensitivity study based on Sobol’s indices was conducted in [12] to demonstrate that the
friction coefficient and yarn height significantly affect the macroscale mechanical response of interest in dry woven
fabrics. In [12,24], yarn properties do not spatially vary and fibers are well aligned. Savvas et al. [43,44] studied the
required RVE size as a function of spatial variations of volume fraction and fiber architecture. They concluded that the
RVE size must increase at higher volume fractions and, additionally, fiber orientation is more important than waviness
in determining the mesoscale RVE size. In another work [17] they also illustrated that geometrical characteristics
(i.e., the shape and arrangement of the fibers) and the material properties (Young’s moduli of the constituents) affect
the homogenized response (average axial and shear stiffness) in unidirectional (UD) composites quite significantly
(with the former being more important). The variations were shown to decrease as the number of fibers and RVE size
increased. Vanaerschot et al. [27] also studied the variability in composite materials’ properties and concluded that
the stiffness in the mesoscale RVE is affected by the load orientation [38] and, additionally, it significantly decreases
as the fiber misalignment (see Fig. 2(c)) increases. In a series of works, Hsiao and Daniel [45–47] experimentally
and theoretically investigated the effect of fiber waviness in UD composites. They demonstrated that under uniaxial
compression loading the stiffness and strength decrease.

The focus of most prior works on UQ and UP in multiscale materials, as briefly reviewed above in the case of
woven composites, has not been placed on rigorously modeling the uncertainty sources and statistically propagating
their effects across multiple scales. For instance, modeling spatial variations via RFs, connecting them across different
spatial scales, and investigating stochastic simulations are often neglected. On the contrary, as we review in Section 2,
significant progress has been made in rigorous UQ and UP analyses in single-scale materials. Our goal is to exploit
the strength of these two bodies of literature to devise a flexible approach for statistical uncertainty quantification
and propagation in multiscale materials. To this end, we introduce the top-down sampling method that allows to
model non-stationary and C0 (i.e., continuous but not differentiable) RFs at fine length-scales (i.e., mesoscale and
microscale) with a stationary and differentiable RF at the macroscale. We motivate the use of multi-response Gaussian
processes to quantify the RFs and conduct sensitivity analyses for dimensionality reduction. The resulting approach is
non-intrusive (in that the computational models need not be adapted to account for the uncertainties) and can leverage
statistical techniques (such as metamodeling and dimensionality reduction) to address the considerable computational
costs of multiscale simulations.

The rest of the paper is organized as follows. In Section 2, we review the methods and tools for single-scale UQ
to motivate the need for quantifying the spatial variations via RFs. Our proposed approach is introduced in Section 3
which, in Section 4, is employed to quantify the macroscale uncertainty in a multiscale cured woven composite
sample. We conclude the paper and provide future directions in Section 5.
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2. Methodological base for uncertainty quantification and propagation

As opposed to multiscale materials such as fibrous composites, there are many works focused on UQ and UP in
single-scale materials. Broadly speaking, there are three major methods for UQ and UP in computational mechanics’
literature which use MC sampling, the perturbation approach, or the spectral stochastic approach. These three
methods start with the random field representation of uncertainty sources. Next, the characterized field is discretized
to assign random (but correlated) values to the finite elements. Finally, the simulations are done to study the response
variability. Below, we elaborate on each of these procedures.

2.1. Random field representation of uncertainty sources

A random field (RF, aka stochastic process) is a collection of random variables (rv’s) indexed in either time or
space [48]. More formally, let us denote a probability space by {S, F, P} where S is the sample space, F is the
σ -algebra on S (i.e., it is a collection of subsets of S that also includes the empty subset), and P is the probability
measure on F which specifies each event’s likelihood of happening. Given the {S, F, P} probability space, we define
an RF as:

R(x, s) ∈ Rq , x ∈ D ⊆ Rn, s ∈ S (2.1)

where s is an outcome in S, and x is the n-dimensional field variable. Generally, x represents either space or time but
it can also denote temperature field, stress or strain field, frequency, or a combination thereof. The domain of x, D, is
either continuous or discrete. In practice, however, D is a finite set since even the continuous domains are discretized
in computational environments. For example, in the context of computational mechanics, often x is taken to represent
the spatial location of IPs or element centroids in a meshed structure. When q = 1, R(x, s) in Eq. (2.1) is a random
variable for fixed x = xi and a function over all x’s for a fixed outcome s j . For q > 1, R(xi , s j ) is a vector with q
elements which might be correlated or not.2

The uncertainty sources in a material system might be mechanical (e.g., Young’s modulus, Poisson ratio, yield
stress, damage evolution parameters), geometrical (e.g., reinforcement distribution, fiber misalignment in composites),
or operational (e.g., load variability). As these quantities change spatially (or temporally) within a material sample,
RFs are generally employed to represent them. To illustrate how spatial variations can be modeled via RFs, we use
the 1D bar in Fig. 4(a). In our pedagogical example, the goal is to assign the three parameters3 [v, ϕ, θ ] to the 20
IPs given the mean values over the entire bar, i.e.,

[
v, ϕ, θ

]
= [55, 0, 5]. For this purpose, an RF with three responses

(q = 3) could be employed for uncertainty quantification. Here, x would be the spatial location of each IP (measured,
e.g., from one end of the bar), and the three outputs of the RF at each location xi along the bar would correspond to the
three parameters at that location, i.e., [vi , ϕi , θi ]. Moreover, if it is believed that some of the outputs are independent,
positively/negatively correlated (e.g., both v and ϕ increase/decrease along the bar), or change rapidly across the IPs,
the RF should be able to capture that. In panels (b) through (c) in Fig. 4 four different scenarios are demonstrated.
In panel (b), the RF’s parameters are chosen to arrive at (i) spatially uncorrelated parameters (e.g., the change in v

across the IPs is uncorrelated with that of θ ), (i i) smooth transitions for each parameter across the IPs, and (i i i) small
changes for each parameter around the corresponding mean values. In panel (c), the changes are increased and so the
realizations tend to deviate more from the mean values. In panel (d), a negative spatial correlation between v and the
other two parameters is also added. This means that, on average, as v tends to increase along the IPs the other two
parameters decrease and vice versa. Finally, in panel (e), the constraint on smooth transitions across the IPs is relaxed
to allow the parameters to change rapidly from one IP to the next.

Although an RF is completely characterized by its nth order distribution function, this information is often too
cumbersome to collect. Hence, RFs are generally defined by their mean and covariance functions. In computational
mechanics’ community, often the RFs are divided to two groups: Gaussian and non-Gaussian.

2 s implies the random nature of the process and is generally dropped from the formulations.
3 The reason behind our choice on the number and nature of these parameters will become clear in Section 4.1.
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Fig. 4. (Color online) Pedagogical example on spatial variations: (a) A 1D bar which is discretized with 20 IPs. The spatial variations of the three
parameters [v, ϕ, θ ] across the IPs can take many forms, four of which are indicated in panels (b) through (e). The figures are all generated with
the same RF but, from one panel to another, some of the RF’s parameters are changed to achieve different spatial variations. In each panel, five
realizations from the corresponding RF are drawn, and the prescribed mean value for each parameter is indicated with a dashed gray line. See the
text for the detailed discussions on the differences across the four panels.

2.1.1. Simulations of Gaussian random fields
Gaussian random fields (GRFs) are ubiquitously employed in science and engineering due to their simplicity,

tractability, and flexibility. These fields are completely characterized by their mean and covariance functions (i.e., 1st
and 2nd moments) and naturally arise as a result of the central limit theorem. Moreover, often (esp. in materials
science) there is scarce information on higher order moments and so GRFs are among the few available options for
uncertainty quantification of spatially varying quantities.

Three main methods are generally used for the simulation of GRFs: the spectral representation method, Karhunen–
Loève (KL) expansion, and the best linear unbiased predictor (BLUP). Below, we briefly describe the first two methods
and, as we use the third method in our approach, elaborate on the BLUP approach in Section 4.3 and Appendix A.1.

With the spectral representation method, a GRF is expanded as a sum of trigonometric functions with random
amplitudes and phase angles. In most applications, however, only the phase angles are assumed as random to sample
functions that are ergodic in both the mean and auto-covariance [49]. With this assumption, based on the spectral
density function ρ(k) where k denotes the frequency, an analytical approach can be used to generate the realization
R̂ (x) from a GRF:

R̂ (x) =

(
2
N

)1/2 N∑
i=1

cos(ki k̂i · x + φi ), (2.2)

where φi is uniformly distributed on [0, 2π ] , and k̂i is uniformly distributed on a unit circle. ki is a random
variable whose probability density function, P(k), is determined by the spectral density function: P(k) = ρ(k)k
and P(k) = ρ(k)k2 for, respectively, two and three dimensional GRFs. Here, ρ(k) must be determined by the user
or calculated via some experimental data. This method of generating realizations of a GRF is also known as the
Cahn’s scheme and has been previously used to generate realizations of microstructures of random heterogeneous
media [50–53].

Analogous to the Fourier series representation of functions, the KL expansion represents RFs as a summation
of some weighted orthogonal functions. Unlike Fourier series, however, in the KL expansion the coefficients are
random variables and the orthogonal bases depend on the decomposed RF. The KL expansion, also known as principal
orthogonal decomposition, is closely related to principal component analysis (PCA) in that the orthogonal functions
used in the expansion are the eigenfunctions of the RF’s covariance function, c:

R̂ (x) = R(x) +

∞∑
i=1

√
λivi (x) ξi , (2.3)
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where R(x) is the expected value (i.e., the mean) of the RF, λi and vi (x) are, respectively, the eigenvalues and
eigenfunctions of c, and ξi ’s are uncorrelated random variables. The series in Eq. (2.3) is, in practice, truncated to
only include the significant terms (i.e., terms with larger eigenvalues).

2.1.2. Simulation of non-Gaussian random fields
Several quantities exhibit non-Gaussian spatial (or temporal) changes and hence are better modeled with non-

Gaussian RFs. Modeling via these fields, though providing more flexibility, is much more complicated than their
Gaussian counterparts as they require higher-order joint multidimensional density functions. Below, we summarize
some of these methods and refer the interested reader to the cited references for more details.

Due to lack of data as well as computational issues, a number of studies have used the translation field concept
to generate a field through the non-linear transformation of an underlying GRF. Most of these methods, however, are
iterative [54–56] and may not guarantee convergence because the marginal distribution of the RF (which is selected
by the user) may not be compatible with the autocorrelation function of the translation field [57].

Copulas, which are multivariate distribution functions with marginal uniform distributions on the [0, 1] interval,
provide another popular method for modeling non-Gaussian RFs. Uncertainty quantification with copulas has
been previously used to analyze highly correlated random variables in finance [58–60], reliability-based design
optimization [61], mechanics [10], and hydrology [62]. Following the above definition, an n-dimensional copula
denoted by C p is defined as:

FX1,X2,...,Xn (x1, x2, . . . , xn|P) = C p(FX1 (x1) , FX2 (x2) , . . . , FXn (xn)|P
′

), (2.4)

where FX1,X2,...,Xn (x1, x2, . . . , xn|P) = FX (x|P) is the joint cumulative distribution function (CDF) of the
multivariate random variable X = [X1, X2, . . . , Xn]T with correlation matrix P, FXi (xi ) is the marginal CDF of
the random variable X i , and P′ is an invariant correlation matrix with entries in [−1, 1] interval. We note that,
herein we have adopted the statistical notation of representing random variables and their values (a real number)
with, respectively, uncial and minuscule letters.

With the definition in Eq. (2.4), copula acts as a link that couples arbitrary marginal distributions to a joint
distribution. To arrive at an alternate formulation, we note that the marginal CDF FXi (xi ) is, by definition, a uniform
rv on [0, 1]. That is:

FXi (xi ) = ui and ui ∈ [0, 1] . (2.5)

Taking the inverse of Eq. (2.5) and replacing for xi ’s and FXi (xi )’s in Eq. (2.4), would represent C p as a function
that maps uniform rv’s on [0, 1]n hypercube to some joint CDF which itself is represented as (inverse) marginal CDF’s
of those rv’s:

FX

(
F−1

X1
(u1) , . . . , F−1

Xn
(un) |P

)
= C p(u1, u2, . . . , un|P

′

). (2.6)

There are several types of copulas such as Gaussian copulas. Typically, the most cumbersome step in finding these
copulas based on some datasets lies in building the transformed correlation matrix.

Polynomial chaos expansion (PCE) provides another flexible and widely popular method for uncertainty quantifica-
tion of spatially varying quantities in a variety of applications including solid mechanics [10,11,63–65], computational
fluid dynamics [66], and diffusion [67]. PCE decomposes a square-integrable rv or RF of unknown form to a series
of orthogonal polynomial functions of some rv’s (e.g., Gaussian, Poisson, or uniform). Following the notation of
Eq. (2.1) and using Gaussian rv’s for the expansion, we have:

R̂ (x) = a0Γ0 +

∞∑
i1=1

ai1Γ1
(
ξi1

)
+

∞∑
i11

i1∑
i2=1

ai1i2Γ2
(
ξi1 , ξi2

)
+ · · · , (2.7)

where {ξi (x)}∞i=1 are independent and identically distributed (iid) standard normal rv’s, Γk is the Wiener polynomial
chaos of order k, and ai1i2... are coefficients or functions in D ⊆ Rn . Having chosen normal rv’s for the expansion
(through ξi ’s), orthogonality of successive Γk requires them to be multivariate Hermit polynomials (which can be
constructed via the tensor product of univariate Hermit polynomial). Eq. (2.7) converges, in a mean-square sense,
to the random process R(x) with the same marginal distributions. Due to limited data and computational reasons,
however, the series is generally truncated.
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2.2. Random field discretization

As briefly mentioned in Section 2.1, continuous or not, RFs are discretized in computational environments and
hence represent the random quantities of the material as a vector of rv’s. These rv’s are then used in the FE mesh
with either a point-type method or an average-type method. With the former approach, the rv’s are simply assigned to
some specific points in the FE mesh (e.g., IPs or element centroid). Representatives of this approach include midpoint,
nodal point, integration point, and interpolation methods [68,69]. With the average-type method, however, the rv’s
are defined as some weighted integrals of the RF over each finite element. Local average and weighted integral
methods [70,71] are examples of this approach.

The stochastic mesh [64], constructed by the spatial location of the rv’s over the structure domain could be of
different resolution than the FE mesh (i.e., finer, coarser, or the same). The advantage of using a coarse stochastic
mesh lies in dimensionality reduction: as each rv counts as one dimension in the UQ and UP analyses, a coarse
stochastic mesh would decrease the computational costs. In a fine mesh, however, the spatial correlations among the
varying quantities (e.g., Young’s modulus) are better captured and the parameter assignment is much easier. It is
obvious that the optimal choice requires a compromise between cost, accuracy, and simplicity.

2.3. The stochastic finite element method

The stochastic finite element method (SFEM) is an extension of the ordinary case where the material characteristics
or boundary conditions are, rather than deterministic, random. In SFEM, the formulation of the stochastic finite
element matrices is perhaps the most important step. For example, if Young’s modulus varies according to the zero-
mean random field R(x), the stochastic stiffness matrix of a finite element, ke, would have the following form [64,72]:

ke
=

∫
V e

BeT
De

0 BedV e, (2.8)

where Be is the deterministic strain–displacement matrix, V e is the volume of the element, and D0 is the random
stress–strain matrix of the material which depends on R(x). Once ke’s are constructed, the global stiffness matrix can
be built and subsequently used for solving the algebraic problem involving loads and displacements. Solving such an
algebraic problem is computationally demanding and so tremendous effort has been placed on how to best integrate
the RF representation of uncertainty sources (discussed in Section 2.1) with the finite element formulations. As our
focus in this work is on uncertainty, we omit the details on the finite element but note that:

• Eq. (2.8) has been used for various finite elements in the past. See [70,73].
• In dynamic problems, the mass and damping matrices can be random as well. The formulations in such problems

are more complicated and costly. See [74,75].

Ghanem and Spanos [63,72] extended deterministic finite element analysis to consider random material properties.
In their work, the input uncertainty was quantified with the KL expansion of a GRF while the output uncertainty
through the PCE expansion of the nodal displacements. Notable works have extended the PCE-based finite element
analysis for a variety of applications [16,17,64–66]. These extensions, however, are applicable to linear systems and
computationally (as well as theoretically) difficult for multiscale UQ and UP.

3. The proposed approach for multiscale UQ and UP

As illustrated in Fig. 5, our approach for multiscale UQ and UP has two main stages: Intra-scale uncertainty
quantification and inter-scale uncertainty propagation. We start by identifying the uncertainty sources at each scale
and modeling them via RFs where one RF is associated with each structure realization (see Section 3.2 for the details).
We employ RFs with sensible (i.e., physically interpretable) parameters for three main reasons (i) to easily couple the
uncertainty sources across the scales and enable their propagation from lower to higher scales, (i i) to connect the most
important parameters of the RFs to the features of the material system and hence identify the dominant uncertainty
sources in a physically meaningful way, and (i i i) to allow for a non-intrusive UQ procedure by directly using the RFs’
outputs in the multiscale FE simulations (instead of adapting the FE formulations for UQ and UP as in Section 2.3).
For these reasons, we use the BLUP representation of multi-response Gaussian processes (MRGPs). We provide the
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Fig. 5. Our approach for multiscale UQ and UP: The proposed approach has two main stages. In the first stage, the various uncertainty sources
across different scales are identified and modeled with RFs. In the second stage, many realizations from the multiscale material are generated via the
top-down sampling approach and, subsequently, simulated to propagate the uncertainty across the scales. To address the significant computational
costs of multiscale simulations, dimension reduction and metamodeling techniques are employed in the first and second stages, respectively.

details on MRGPs in Section 3.1 but note here that they enable sensible characterization of uncertainty sources, are
flexible and computationally efficient, and can be easily trained via available data [76].

At this point, the dimensionality in the UQ and UP tasks has been reduced from the number of degrees of
freedom in the multiscale simulation to the few hyperparameters of the MRGP at the coarsest scale (see Sections 3.1
and 3.2 for the details). However, depending on the material system and quantities of interest, generally not all
the hyperparameters need to be considered in the UP process. Hence, further dimensionality reduction can be
achieved by identifying the dominant uncertainty sources and, equivalently, the corresponding RF parameters through,
e.g., sensitivity analysis (SA).

The second stage of our approach starts by replacing the nested simulations at fine scales via inexpensive but
accurate metamodels (aka surrogates or emulators) to decrease the computational costs of a single multi-scale
simulation from hours (or even days) to minutes. The choice of the metamodel, its inputs, and its outputs depends
on the nature of the finite element simulation (we elaborate on this with an example in Section 4.5). Finally, the
uncertainty at the highest scale (e.g., macroscale in Fig. 1) is quantified by propagating the uncertainty from all the
finer scales in the UP process. During UP, various multiscale simulations are conducted where in each simulation one
realization of the spatially varying quantities are used in the multiscale material. To generate each of these realizations,
we introduce the top-down sampling approach where realizations are assigned to the spatially varying parameters from
the coarsest scale to the finest scale in the material system. We elaborate on the details in Section 4.3 but note that
this sampling strategy enables modeling (i) non-stationary and C0 (i.e., continuous but not differentiable) spatial
variations at the fine-scales, and (i i) partial correlations between the various uncertainty sources within and across
scales. Although the top-down sampling method can be integrated with any analytical RF, we have chosen MRGPs
since they are sufficiently flexible and possess a few physically interpretable hyperparameters. Additionally, other RFs
can sometimes be converted into GPs upon appropriate transformations.

More details on the proposed approach are provided below and in Section 4 where it is used to propagate the
microscale and mesoscale uncertainties in a cured woven fiber composite to quantify the macroscale uncertainty.

3.1. Multi-response Gaussian processes for uncertainty quantification

MRGPs are widely popular in RF and surrogate modeling [76–83] and have been used in a wide range of
applications including uncertainty quantification [77,81], machine learning [84], sensitivity analyses of complex
computer models [85], Bayesian optimization [86], and tractable Bayesian calibration [87–91]. For an RF with q
outputs y =

[
y1, . . . , yq

]T and the field (e.g., spatial or temporal) inputs x = [x1, . . . , xd ]T , the BLUP representation
of an MRGP with constant means reads as:

y ∼ Nq
(
β, c

(
x, x′

))
, (3.1)

where Nq represents a q-dimensional Gaussian process, β =
[
β1, . . . , βq

]T is the vector of responses’ means, and
c
(
x, x′

)
is a parametric function that measures the covariance between the responses at x and x′. One common choice
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for c
(
x, x′

)
is:

c
(
x, x′

)
= Σ

⨂
exp

{
d∑

i=1

−10ωi
(
xi − x ′

i

)2

}
= Σ

⨂
r
(
x, x′

)
, (3.2)

where Σ is a q×q symmetric positive definite matrix that captures the marginal variances and the covariances between
the outputs, d is the dimensionality of the field, ω = [ω1, . . . , ωd ]T are the so-called roughness or scale parameters
that control the smoothness of the RF, and

⨂
is the Kronecker product. Note that the dimension of β and Σ depends

on q while that of ω depends on d. The parameters β, Σ, and ω are called the hyperparameters of an MRGP model
and, collectively, enable it to model a wide range of random processes:

• The mean values of the responses over the entire input space are governed by β.
• The general correlation between the responses (i.e., yi and y j , i ̸= j) over the input space is captured by the

off-diagonal elements of Σ.
• The variations around the mean for each of the responses are controlled by the diagonal elements of Σ.
• The smooth/rapid changes of the responses across the input space are controlled by ω.

To demonstrate the above features, the example in Fig. 4 is recalled. Therein, the three mean values of the responses
(the dashed gray lines) are set to β = [55, 0, 5]. In Fig. 4(b), the symmetric 3 × 3 matrix Σ is diagonal with small
(positive) entries. This choice of Σ results in small variations around the mean at a fix input location for any of the
responses. To have smooth random fields, ω is set to a small number as well. To increase the variations around the mean
(corresponding to Fig. 4(c)), the diagonal elements of Σ are increased. To prescribe negative (positive) correlation
between realizations of v and ϕ (see Fig. 4(d)), the corresponding element in Σ is set to a negative (positive) number
(while ensuring Σ is still positive definite). Lastly, to decrease the smoothness of the fields over the input space (see
Fig. 4(e)), ω is increase.

In case some experimental data are available, all the hyperparameters of an MRGP model can be estimated via,
e.g., the maximum likelihood method. Otherwise, as in this work, expert or prior knowledge can be used to adjust
these parameters and model a spatially varying quantity. Once these hyperparameters are determined, generating
realizations from an MRGP model is achieved through some closed form formula (detailed in Appendix A.1).

3.2. Top-down sampling for uncertainty propagation

To carry out one multiscale simulation, material properties must be assigned to all the IPs at all scales where
the IP properties at any scale depend on an RVE at the next finer scale (this RVE itself has many IPs). Since these
properties depend on the uncertainty sources (or, equivalently, on the RFs), the latter must be coupled across the scales.
Recall that, due to the multiscale nature of the structure, the number of RFs significantly increases at the fine-scales
because we associate an RF to each structure realization. For instance, in the two-scale structure in Fig. 3 there will be
10 000+1 RFs; one for the mesostructure and 10 000 for its IPs (corresponding to the microstructures). The mesoscale
RF will, in essence, characterize the spatial variations of the microscale RFs.

Having used RFs whose parameters are physically sensible and can be directly linked to the uncertainty sources,
this cross-scale coupling is straightforward and can be achieved with top-down sampling where the outputs of the
MRGP at each IP of a particular scale serve as the hyperparameters of the MRGP of the RVE associated with that
IP. This process constitutes nested RFs. To assign values to the IP parameters in the entire multiscale structure,
this approach starts from the coarsest or top scale and hence the name top-down sampling. In the above example,
the mesoscale MRGP is first used to assign values to the mesoscale IPs which essentially assigns values to the
hyperparameters of the 10 000 MRGPs at the microscale. Then, these latter MRGPs are used to assign values to
the IPs of each microstructure.

While the top-down sampling method works with any parametric RF representation (e.g., PCE or KL expansion),
we highly recommend employing compact representations that include a few hyperparameters. This is mainly because
the number of hyperparameters at the coarse scales increases rapidly as the number of spatially varying quantities
increases at the fine scales. For instance, assuming three (two) quantities change spatially in the 3D microstructure
in Fig. 3, an MRGP with 12 (8) hyperparameters is required. To model the spatial variations of these 12 (8)
hyperparameters at the mesoscale, an MRGP with 93 (47) hyperparameters is required.
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Fig. 6. (Color online) The macroscopic cured woven laminate structure studied in our work: (a) The undeformed structure consists of four identical
plies and undergoes bias tension deformation. The bottom end of the sample is clamped while the other end is pulled by 1 mm. The light blue
lines indicate the fiber orientation. The dimensions are scaled for a clearer representation. The contour plots in (b) through (g) demonstrate sample
spatial variations in yarn angle ((b) and (e), in degrees), fiber volume fraction ((c) and (f), in percent), and fiber misalignment angle ((d) and (g), in
degrees) across the IPs. Contours (b) through (d) and (e) through (g) correspond to, respectively, cases 10 and 8 in Section 4.6.

4. Application of the proposed approach in cured woven fiber composites

As argued in Section 1, woven fiber composites possess a hierarchical structure where multiple sources of
uncertainty exist across the scales. In this section, we follow the steps of our approach to quantify the macroscale
uncertainty in the elastic response of a cured woven composite as a function of spatial variations in the fiber
volume fraction (microscale and mesoscale), yarn angle, and fiber misalignment angles (mesoscale). As illustrated
in Fig. 6(a), the structure is composed of four identical woven plies that are stacked in the same orientation and
constitute a total thickness of 2.4 mm (the fiber orientations are indicated with light blue lines). The geometry of these
woven plies are obtained via the bias-extension simulation of dry woven fabrics using the non-orthogonal constitutive
preforming model. While the bottom of the sample is clamped, the other end is pulled by 1 mm to generate the bias
tension deformation. In the macroscale simulations, 3D solid continuum elements are employed to discretize the
structure. As our focus is on UQ and UP, at this point we have assumed that only elastic deformation occurs. For
brevity, we denote the three scales with numbers throughout this section: 1 → Macro, 2 → Meso, 3 → Micro.

4.1. Uncertainty Sources: Yarn Angle, Fiber Volume Fraction, and Fiber Misalignment Angles

The yarn material properties primarily depend on two parameters: fiber volume fraction, v, and fiber misalignment.
While in most previous works v is postulated to be spatially constant [92–94], in practice, it varies along the yarn path
particularly where yarns have compact contact [28,29]. Consequently, our first uncertainty source arises from the
spatial variations of v which starts from the microscale and propagates to mesoscale and macroscale. In this work,
we have assumed that 45% ≤ v ≤ 65% based on the test of our material system. Fig. 6(c) and (f) demonstrate two
possible spatial variations for v over the macrostructure.
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Fig. 7. (Color online) Fiber misalignment angles: The zenith and azimuth angles characterize the fiber misalignment angle with respect to the local
orthogonal frame on the yarn cross-section.

During the manufacturing process, the fibers in the yarn deviate from the ideal orientation and render the cross-
section of the yarn heterogeneous and anisotropic. These deviations result in fiber misalignment which is different
from the concept of fiber waviness in that a fiber can be perfectly waved without misalignment. As illustrated in
Fig. 7, this misalignment can be characterized with the two angles −π ≤ ϕ ≤ π and 0◦

≤ θ ≤ 90◦ which measure the
deviation of the fiber direction, f1, with respect to the local orthogonal frame on the yarn cross-section, gk . Based on
the available experimental data in the literature [28], in this work we have assumed −π ≤ ϕ ≤ π and 0◦

≤ θ ≤ 90◦.
Fig. 6(d) and (g) demonstrate two possible spatial variations for θ over our macrostructure.

Lastly, we note that in modeling the mesoscale woven composites the yarn angle (α, the angle between the warp
and the weft, see Fig. 2(a)) is often presumed to be 90◦. This assumption does not generally hold in practice due
to the large in-plane shear deformation during preforming process and manufacturing imperfections. Hence, we also
investigate the effect of the spatial variations of mesoscale yarn angle on the macroscopic properties. In our example,
as opposed to the other three parameters (i.e., [v, ϕ, θ ]), the spatial variation of α in the macroscale can be obtained
from the preforming process simulation [95]. So, we investigate the effect of α in two cases: deterministic spatial
variations (see Fig. 6(b)) and stochastic spatial variations (see Fig. 6(e)).

4.2. Multiscale finite element simulations

We employ the computational homogenization technique for modeling the multiscale woven sample where the
material property at any length-scale is calculated through the homogenization of an RVE at the lower scale. Below, we
elaborate on the details of FE simulations at each scale. It is noted that while in traditional multiscale homogenization
it is assumed that macroscale and mesoscale IPs represent the same microstructure, we assign different microstructures
to each IPs at each length-scale.

At the microscale, the RVEs consist of 300 × 300 × 60 voxels (42 µm × 42 µm × 8.4 µm) and the fibers have
a diameter of 7 µm (see Fig. 8). The simulations are elastic where periodic boundary conditions are employed. It
is assumed that the fibers and the matrix are well bonded and there are no voids. To obtain the stiffness matrix, C,
of the UD RVE, six stress-free loading states are applied (i.e., only one of the εxx , εyy , εzz , εxy , εxz , and εyz strain
components are applied in each case). Since the simulations are elastic, C mainly depends on the volume fraction,
v [96].

At the mesoscale, the open source software TexGen [30] is used to create the geometry and mesh for the 2 × 2
twill woven RVE (see Fig. 2(a)) with 8 yarns. To generate such an RVE in TexGen the yarns’ paths, cross-sections,
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Fig. 8. (Color online) Sample UD RVEs at the microscale: Two UD RVEs with randomly distributed fibers. Both RVEs have periodic boundaries
and a volume fraction, v, of 58%. These UD RVEs correspond to mesoscale IPs and their deviation from the yarn centerline models fiber
misalignment.

and the weaving patterns must be prescribed. Yarns’ paths in TexGen are represented by 3D spatial curves and their
cross-sections are defined as 2D ellipses perpendicular to the tangent of yarn centerline. The space between the yarns
is filled with matrix and voxel meshes are used to discretize the RVE where each voxel is designated to either a
yarn or the matrix. To balance cost and accuracy, we have used a voxel mesh with 625 000 elements. To reduce
the computation costs, periodic boundary conditions (PBCs) are employed throughout. We note that, if PBCs are
prescribed correctly, the homogenized stress–strain response does not scale with the RVE size [96].

Properties of carbon fibers and epoxy resin were taken from manufacturer’s data (see Table 1). The resin is isotropic
and its material properties are taken from pure epoxy. Yarns with well-aligned fibers are treated as transversely
isotropic. With fiber misalignment, however, yarns are not transversely isotropic since the material frame across the
IPs on their cross-section is non-uniformly distributed. In this case, the micro-plane triad model proposed by Kedar
et al. [97] is employed to account for fiber misalignment by defining an orthotropic micro-triad, f⃗k , for each IP of the
yarn. This triad is related to the local frame, g⃗k (see Fig. 7), via the misalignment angles:

f⃗1 = cos (θ)
g⃗1

|g⃗1|
+ sin (θ) cos (ϕ)

g⃗2

|g⃗2|
+ sin (θ) sin (ϕ)

g⃗3

|g⃗3|
, (4.1)

f⃗2 = − sin (θ)
g⃗1

|g⃗1|
+ cos (θ) cos (ϕ)

g⃗2

|g⃗2|
+ cos (θ) sin (ϕ)

g⃗3

|g⃗3|
, (4.2)

f⃗3 = f⃗1 ∧ f⃗2, (4.3)

where |·| and ∧ denote, respectively, the norm of a vector and the cross product. As for the local frame g⃗k , it is
automatically generated by TexGen for each IP (each voxel at the mesoscale) once the woven RVE is discretized.
We note that, the stiffness matrix at each yarn material point is obtained via the UD-RVE homogenization (see also
Fig. 14).

To link the mesoscale and macroscale, the stress–strain relations for effective elastic material properties of woven
RVE are required. This relation can be written in terms of the symmetric mesoscale stiffness matrix as:⎡⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ13
σ23

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
C11 C12 C13

C22 C23
C33

C14 0 0
C24 0 0
C34 0 0

Sym.

C44 0 0
C55 C56

C66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε11
ε22
ε33
2ε12
2ε13
2ε23

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.4)

where coordinate 3 is in the thickness direction of the woven RVE (see Fig. 2(a)). If α = 90◦, coordinates 1 and 2
coincide with the warp and weft directions and the effective material behavior can be described with an orthotropic
material model. If α ̸= 90◦, a monoclinic material model is used instead.

4.3. Top-down sampling, coupling, and random field modeling of uncertainty sources

To help clarify the descriptions, we first introduce some notation. Superscript and subscripts denote, respectively,
scales and IPs. Variables with a bar represent averaged quantities over all the IPs at a particular scale. For instance,
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Table 1
Fiber and matrix properties: The moduli (i.e., E and G) are all in GPa. See Fig. 8 for the definition of coordinate system.

Ezz Exx = Eyy νzx = νzy νxy Gxz = G yz Gxy

Carbon fiber 245 19.8 0.28 0.32 29.2 5.92
Epoxy resin 3.79 3.79 0.39 0.39 1.36 1.36

Fig. 9. (Color online) Coupling the uncertainty sources across the scales: The spatial variations of v and θ at the macroscale are connected
to those at the finer scales. For brevity, the coupling is illustrated only for the average values for the two quantity (i.e., the mean of the RFs:
β = [βv, βθ ] =

[
v2, θ

2
]
). The same method applies to other parameters of the random field (βϕ , Σ, and). The macrostructure contains 15 000 IPs.

Each mesoscopic woven RVE contains 625 000 IPs where 525 000 IPs belong to the eight tows and the rest to the matrix.

v1
i denotes the fiber volume fraction assigned to the i th IP at the macroscale. θ

2
=

∑N
i=1θ

2
i represents the average

misalignment (zenith) angle at the mesoscale for a woven RVE.
At the microscale, the average volume fraction is the only source of uncertainty. Since the spatial distribution of

the fibers in a UD-RVE has negligible effect in linear analyses, there is no need for RFs at this scale. At the mesoscale
and macroscale, however, the fiber volume fraction and the two misalignment angles change spatially and hence RFs
must be employed for modeling them. As motivated in Section 3, MRGPs were employed to model all the spatial
variations (other RF representations can also be used in the expense of more computations).

Assuming the eight tows in a woven RVE are statistically independent and the spatial variations within them
originate from the same underlying random process [27], a total of 12 hyperparameters are required to completely
define an MRGP for a woven RVE (see Eq. (4.5)): three mean values (β =

[
βv, βϕ, βθ

]T ), six variance/covariance
values for Σ (

[
σ 2

vv, σ
2
ϕϕ, σ 2

θθ , σ
2
vϕ, σ 2

vθ , σ
2
ϕθ

]
), and three roughness parameters (ω =

[
ωx , ωy, ωz

]T where xyz denotes
the cartesian coordinate system at the mesoscale). Once these parameters are specified, the spatial coordinates of
the IPs in a woven RVE can be used to assign realizations of v, ϕ, and θ to them (see Appendix). For each IP at
the macroscale, however, these 12 hyperparameters serve as the responses of the macroscale MRGP which has a
total of 93 hyperparameters (12 mean values for β, 78 unique covariance/variance values for Σ, and 3 values for
ω =

[
ωη, ωξ , ωζ

]T where ηξζ denotes the cartesian coordinate system at the macroscale). In the top-down sampling
approach, first the 48 hyperparameters of the macroscopic MRGP are prescribed. Then, this MRGP is sampled to
assign 12 hyperparameters to each macroscopic IP where they are used in the mesoscopic MRGPs. This process is
illustrated in Fig. 9 where, for clarity, only two (out of the 12) hyperparameters at the mesoscale are presented.

We note that some parameters might not spatially vary according to a normal distribution. In such cases, we
recommend using appropriate transformations to convert the distribution into a Gaussian one. For instance, the zenith
misalignment angle has a log-normal distribution [28] and so we carry out all the computations in the log-space
and then revert to the original scale via exponentiation. If transformation is not possible, non-Gaussian RFs (see
Section 2.1.2) can be used in the top-sampling procedure. Sample spatial variations of v2, ϕ2, and θ2 over the woven
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Fig. 10. Sample spatial variations of v2, ϕ2, and θ2 for different variances: The spatial variations belong to a randomly selected cross-section of a
yarn with the averages of 55%, 3◦, and 0◦, respectively. The distribution of θ2 is log-normal.

RVE are illustrated in Fig. 10. Such variations are controlled by adjusting the parameters of the MRGP (see Section 3.1
and Appendix A.2).

4.4. Dimension reduction at the mesoscale via sensitivity analysis

By modeling the spatial variations via RFs, the dimensionality of the UQ and UP problem has decreased to
the number of RF hyperparameters. Although this is a significant reduction, the considerable cost of multiscale
simulations (even in the linear analysis) renders the UQ and UP process computationally demanding. To address this
issue, we note that depending on the property of interest a subset of uncertainty sources are generally the dominant
ones in physical systems. Since our composite undergoes an elastic deformation, we expect a small subset of the
uncertainty sources (i.e., RF hyperparameters) to be important.

We conducted multiscale sensitivity analyses to determine which of the 12 hyperparameters of an MRGP model are
the most important ones (and must be considered in UP) based on their impact on mesoscale material response. Our
studies consisted of changing one of the hyperparameters while keeping the rest of them fixed. Then, if the variations
in the homogenized response (effective moduli) were negligible, the hyperparameter was deemed as insignificant and
set to a constant thereafter. For brevity, we summarize the results below and include the details in Appendix A.2. All
the simulations in this section were conducted on a woven RVE with α = 90◦.

We found that the homogenized moduli (see Eq. (4.4)) are affected by neither the six covariance/variance values
(i.e.,

[
σ 2

vv, σ
2
ϕϕ, σ 2

θθ , σ
2
vϕ, σ 2

vθ , σ
2
ϕθ

]
) nor the three roughness parameters ω =

[
ωx , ωy, ωz

]T . In case of average values
(i.e., β), the average fiber volume fraction (v) and zenith angle (θ ), as opposed to that of the azimuth angle, were found
to considerably affect the homogenized response of a woven RVE at the mesoscale. The effect of average values on
the effective moduli are summarized in Fig. 11.

It must be noted that since we are interested in the elastic response of the multiscale composite in Fig. 6, the
variations of effective moduli were only considered in our sensitivity studies. As opposed to the effective behavior, the
local behavior (i.e., stress field) of the woven RVE is quite sensitive to the spatial variations of both v and θ (but not
ϕ) and must be considered in nonlinear analysis, see Fig. 12.
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Fig. 11. (Color online) Effect of average values on the effective moduli of a woven RVE: While the average fiber volume fraction (v) and zenith
angle (θ ) considerably affect the homogenized response of a woven RVE at the mesoscale, the average and spatial distribution of azimuth angle are
unimportant. See Fig. 2(a) for the definition of the coordinate system. Each point on these figures represents an averaged value over 30 multiscale
simulations (see Appendix A.2 for the details). The yarn angle is set to 90◦.

Fig. 12. (Color online) Effect of spatial variations on the stress field (MPa): Stress fields for (a) No fiber misalignment and no spatial variations
in v. (b) Only spatial variations in v where σ 2

vv = 16% and ω = 1. (c) Only spatial variations in ϕ and θ where ϕ = 0◦, θ = 15◦, σ 2
ϕϕ = 2500,

σ 2
θθ = 2, ωθ = 1, and ωϕ = 1. (d) Same settings as in (c) but with θ = 2◦ and σ 2

ϕϕ = 400. In all simulations, v = 65%.

4.5. Replacing meso and microscale simulations via metamodels

To further reduce the multiscale UQ and UP costs, we employ a metamodel to replace the micro and mesoscale
FE simulations corresponding to each macroscale IP. In particular, the metamodel captures the macroscale spatial
variations of the stiffness matrix (see Eq. (4.4)) of the woven RVEs associated with the macroscale IP’s as a function
of yarn angle (α2), average volume fraction (v2), and average misalignment angle (θ

2
). In machine learning parlance,
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Fig. 13. (Color online) Prediction error (log scale) as a function of the number of training samples: As the number of training samples increases,
the accuracy of the MRGP metamodel in predicting the elements of the stiffness matrix of the mesoscale woven RVE increases.

the inputs and outputs of the metamodel are, respectively, [α2, v2, θ
2
] and the stiffness matrix of a woven RVE. We

note that if the mesoscale spatial variations of the fiber volume fraction and misalignment angle were found to be
important in Section 4.4, the metamodel would have had the corresponding hyperparameters of the MRGP (e.g., σ 2

vv

and σ 2
θθ ) as inputs.

To fit the metamodel, we generated 6 training datasets of sizes 10, 20, . . . , 60 with Sobol sequence [98,99] for
α2

∈ [60◦, 90◦], v2
∈ [45%, 70%], and θ

2
∈ [0◦, 15◦]. Afterwards, we fitted an MRGP metamodel to each dataset.

The accuracy of each model was then evaluated against a validation dataset with 20 samples via:

e = 100

√ 1
20

20∑
i=1

(
1 −

ŷ
y

)2

%. (4.5)

The prediction error of each model is illustrated in Fig. 13 where it is evident that with roughly 30 samples all the
elements of C can be predicted with less than 1% error.

4.6. Results on macroscale uncertainty

Multiple macro simulations are conducted where α1
i , v1

i , and θ1
i change spatially across the macroscale IPs in each

simulation and the fitted metamodel is used to predict the stiffness matrix of the woven RVEs associated with these
IPs. To quantify the importance of these variables and their spatial variations on the macroscopic behavior, ten cases
are considered. As detailed in Table 2, the spatial variations are changed in a controlled manner from one case to the
next. Other than the first two cases, 30 independent macroscale simulations are conducted for each case to account for
the randomness. In summary, a total of 242 macroscale simulations were conducted with an average simulation time
of roughly 20 min running on an HPC cluster with 8 nodes per simulation. In all simulations, the average fiber volume
fraction in the macrostructure (i.e., v1) and the yarn volume fraction in woven RVE were, respectively, 55% and 84%.
Additionally, since α1 from processing simulation was 78◦ (see Fig. 6(b) for the spatial distribution), in cases where α1

i
changed spatially, it was ensured that the average over all the IPs was 78◦. In cases with fiber misalignment (i.e., non-
zero θ

1
), the average over all the IPs was always set to 5◦. The variance/covariance elements of the marginal variance

matrix (i.e., Σ) of the macroscale MRGP model were set to:
[
σ 2

αα, σ 2
vv, σ

2
θθ , σαv, σαθ , σvθ

]
= [14, 16, 2.25, −4, 4, −4].

These values were chosen to model sufficient variations around the mean values (i.e., β) while ensuring the resulting
random values are valid (e.g., θ1

i ≥ 0◦ and α1
i ≤ 90◦) and fall in the range were the mesoscale metamodel is
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Table 2
Description of the simulation settings: Ten simulation cases are considered to quan-
tify the macroscale uncertainties and the relative importance of local fiber volume
fraction, yarn angle, and fiber misalignment angle. The variations are changed in
a controlled manner from case to case. MRGPs are employed to generate random
realizations in all cases.

Description

Case 1 1 simulation: No misalignment, no spatial variations in v1 and α1,
v1

= 55% and α1
= 90

Case 2 1 simulation: No misalignment, no spatial variations in v1 and
v1

= 55%, α1 from processing simulations
Case 3 30 simulations: No misalignment, no spatial variations in v1 and

v1
= 55%, α1 changes spatially via GP

Case 4 30 simulations: No misalignment, spatial variations in v1 via GP
and v1

= 55%, no spatial variations in α1 and α1
= 90

Case 5 30 simulations: No misalignment, spatial variations in v1 via GP
and v1

= 55%, α1 from processing simulations
Case 6 30 simulations: θ

1
= 5 and spatial variations with GP, no spatial

variations in v1 and α1, v1
= 55% and α1

= 90
Case 7 30 simulations: θ

1
= 5 and spatial variations with GP, no spatial

variations in v1 and v1
= 55%, α1 from processing simulations

Case 8 30 simulations: There is misalignment and α1, v1 and θ1 change
spatially via an MRGP (uncorrelated changes)

Case 9 30 simulations: There is misalignment and α1, v1 and θ1 change
spatially via an MRGP (correlated changes)

Case 10 30 simulations: There is misalignment where v1 and θ1 change
spatially via an MRGP (changes are correlated and conditioned on
the spatial variations of α1 from processing simulations, see
Appendix A.3)

fitted. To eliminate the spatial variations of any of the parameters (e.g., v1 and θ
1

in case 3), the corresponding
variances/covariances in Σ were simply set to zero (this will essentially reduce the MRGP model to a single response
GP). Finally, we note that σαv is negative to model the increase in fiber volume fraction as the yarns get closer after
preforming. σvθ is also negative to consider the decrease in misalignment angle in rich fiber regions [28].

Our multiscale UP process is summarized in Fig. 14. For each simulation in Table 2, first the macroscopic spatial
variations of the IP parameters (i.e., α1

i , v
1
i , θ

1
i ) are prescribed via the macroscale MRGP model. These parameters

correspond to the hyperparameters of the mesoscale MRGP model (associated with each macroscale IP) that assigns
parameters to the mesoscale IPs. Finally, a microstructure is assigned to each mesoscale IP where its average fiber
volume fraction is determined by the mesoscale MRGP. For our example in Fig. 6(a), the integrated micro and
mesoscale simulations are replaced with a GP metamodel that is used to predict the stiffness matrix at each different
location in the macroscale simulation.

Fig. 15(a) compares the exerted force on the cross-section of the sample for the ten cases where, for cases 3
through 10, the force–displacement line is averaged over the 30 multiscale simulations. It is evident that with spatial
variations, especially in α, a larger force is exerted on the cross-section of the sample. In particular, the three bottom
lines in Fig. 15(a) correspond to the cases where there are no spatial variations in the yarn angle (cases 1, 4, and 6).
Fig. 15(b) demonstrates the standard deviation of the 30 simulations for cases 3 through 10. As it can be observed, the
global response of the structure is not noticeably sensitive to the spatial variations.

The force–displacement curve is a global measure of the structure’s behavior. To illustrate the effect of spatial
variations on local behavior, we compare the average and standard deviation of the von-Mises stress field in Figs. 16
and 17, respectively. By comparing the stress fields for cases 1 through 3 in Fig. 16 we can conclude that spatial
variations of the yarn angle are significantly important and must be considered. Additionally, the random spatial
variations of yarn angle (see case 3 in Fig. 17) can affect the stress fields (though quite insignificant when comparing
the magnitudes of the color bars in Figs. 16 and 17). The effect of spatial variations in fiber volume fraction and
misalignment angle can be quantified by comparing cases 4 through 7 where it is demonstrated that these effects
are quite negligible with respect to the effect of the yarn angle. Similar results are obtained in cases 7 through 10
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Fig. 14. (Color online) Multiscale UQ and UP in a woven fiber composite: During the UP process, various macroscale simulations are conducted
where the spatial distributions of fiber volume fraction and misalignment angle vary among different simulations. These spatial distributions are, in
cases 9 and 10, conditioned on that of the yarn angle (which is obtained from the processing simulation). The top-down sampling approach is used
for passing the spatial distributions from the macroscale down to the mesoscale. To reduce the computational expense of nested FE simulations,
the microscale and mesoscale simulations are replaced with a metamodel.

where most of the variations can be attributed to the yarn angle. In particular, the mean stress field in case 10 (which
is perhaps the most relevant to a real part) significantly deviates from that of the reference solution in case 1. The
variations among the 30 simulations in case 10 are not, however, the most significant among all the cases because
the spatial variations of the yarn angle are fixed across the 30 simulations. The most variations across the simulations
belong to case 9 (where all the three parameters change spatially and randomly) followed by case 3 (where only the
yarn angle changes spatially and randomly).

Since we have employed an explicit solver in our FE simulations, artificial stress concentrations might occur
especially at both ends of the sample. For this reason, in Fig. 18 the mean and standard deviation of the stress along
the mid-section of the part are plotted. In line with the above discussions it is observed that the stresses are quite
significantly underestimated when the spatial variations in the yarn angle are not considered (cases 1, 4, and 6 in
Fig. 18). The most variations also belong to case 9 followed by case 3. Finally, we note that the zigzag pattern in the
stresses in Fig. 18 are due to the rough changes in the yarn angle in the adjacent macroscale IPs (and not the severe
distortion of the finite elements).

5. Conclusion and Future Works

Limited advancement has been made in integrating statistical uncertainty quantification (UQ) and propagation
(UP) methods with multiscale simulations. Herein, we have introduced an approach for multiscale UQ and UP that
models the uncertainty sources with multi-response Gaussian processes (MRGPs) and employs statistical techniques
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Fig. 15. (Color online) Effect of spatial variations on force–displacement curves: (a) Average and (b) standard deviation. Without any spatial
variations, a smaller force is applied to the cross-section of the woven fiber composite. For cases 3 through 10, the curve is averaged over 30
multiscale simulations.

Fig. 16. (Color online) Effect of spatial variations on von-Mises stress field over the woven macroscopic composite: For cases 3 through 10, the
fields are averaged over the 30 simulations. All fields have the same color bar where the maximum is set to 500 MPa for better comparison. The
maximum stress is provided below each field.
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Fig. 17. (Color online) Effect of random spatial variations on von-Mises stress field over the woven macroscopic composite: The fields quantify
the standard deviation of the stress field over the 30 simulations. All fields have the same color bar where the maximum is set to 20 MPa for better
comparison. The maximum standard deviation is provided below each field.

(such as metamodeling and sensitivity analyses) to address the computational costs. Our choice of random field
enables manageable uncertainty quantification by directly relating the hyperparameters of the MRGP to the physical
uncertainty sources. It also allows to couple the uncertainty sources across the spatial scales and build nested random
fields that can model non-stationary and C0 (i.e., continuous but not differentiable) fields at the fine-scale. These
nested random fields are built through the top-down sampling scheme where the hyperparameters of MRGP models
at the mesoscale are determined at the macroscale via a single (and separate) MRGP model.

We applied our approach to quantify the macroscale uncertainty in the linear analysis of a woven composite
due to spatial variations of yarn angle, fiber volume fraction, and fiber misalignment angle. We chose such
materials because they possess a hierarchical structure and are ubiquitously employed in aerospace, construction, and
transportation industries. Computational homogenization technique was used to conduct the multiscale simulations
where a monoclinic material model was employed to allow for modeling non-orthogonal woven RVE samples which
exhibit different behavior spatially. We also modeled fiber misalignment in mesoscale cured woven RVE analyses by
implementing a micro-plane triad model. Our results indicate that the effect of uncertainty sources on the materials’
response at the macroscale, especially the stress field, could be significant. In particular, it was demonstrated that
the spatial variations of the yarn angle have a considerable effect on both homogenized and local behavior in linear
analyses of woven composites. The spatial variations of fiber volume fraction and misalignment angles have, relative
to the yarn angle, negligible effect for the studied linear behavior. To the best of our knowledge, these effects have not
been previously studied elsewhere.

Our microscale and mesoscale RVEs were sufficiently large and so more uncertainty would have been observed
in the response had we chosen smaller RVEs. Additionally, we focused on the first and second moments of the
response (i.e., the stress field) for macroscale uncertainty quantification. Higher moments should clearly be considered
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Fig. 18. (Color online) Von-Mises stress on the mid-section of the part: (a) The mean and (b) the standard deviation of stress at the mid-section. In
cases 3 through 10, the mean and standard deviation are calculated for the 30 simulations.

to quantify the uncertainty more rigorously. Our choice on MRGPs implies a normality assumption which might
not hold in other applications where the distributions are heavily skewed or appropriate transformations are not
readily available. In such cases, other random field representations (see Section 2.1) can be integrated with the top-
down sampling approach at the expense of more computations. We plan to gather experimental images from various
structures at different spatial scales to further demonstrate the applications of our approach.
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Appendix

A.1. Gaussian processes

Below, we first briefly describe the Gaussian process (GP) modeling procedure, i.e., how to estimate the parameters
of a GP model given some training dataset (see [77,80,100] for more details). Then, we elaborate on how a learned
GP model (or one whose parameters are known) can be used.

A.1.1. Parameter estimation in GP modeling
Let x = [x1, x2, . . . , xd ]T and y(x) denote, respectively, the set of input variables over the d-dimensional input

space Rd and the scalar response function. Suppose we observe the q-dimensional response y = [y1(x1), y1(x2),
. . . , y1(xn), . . . , yq (x1), . . . , yq (xn)

]
T at n distinct locations D = {x1, x2, . . . , xn} and wish to predict y (x0) =[

y1 (x0) , . . . , yq (x0)
]T for any x0ϵRd . The basic idea here is to model y(x) as a realization of a GP, denoted by

Y(x), with the parametric mean and covariance function of:

E [Y (x)] = β, (A.1)

c
(

x, x
′
)

= Cov
[
Y (x) , Y

(
x

′
)]

. (A.2)
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As in this work we use the GP model for interpolation, reversion to the mean [101] is of no concern. Hence, we
have prescribed a constant mean for the GP model but note that known basis functions (that depend on x) can also be
employed. As for the covariance function, the most common choice is the so-called Gaussian covariance function (see
Eq. (3.2)). The heart of GP modeling lies in estimating its hyperparameters (via training dataset) or adjusting them
(based on prior knowledge or expertise). While for metamodeling (Section 4.5 these hyperparameters were estimated,
in Sections 4.3 and 4.4 they were adjusted.

The hyperparameters of a GP model are denoted by β, Σ, and ω (see Eqs. (4.6) and (A.1)) which can be estimated
via either the maximum likelihood estimation (MLE) or cross-validation (CV) methods. In this work, we use the
MLE method as it is shown to be more robust and efficient [80]. Within the MLE framework, the hyperparameters are
estimated by maximizing the multivariate Gaussian likelihood function:[

β̂, Σ̂, ω̂
]

= argmax
β,Σ,ω

L [β,Σ, ω|y] = argmax
β,Σ,ω

det
(

2π
(
Σ

⨂
R

))−
1
2 exp

{
−

1
2

(y

− 1
⨂

β
)T (

Σ
⨂

R
)−1 (

y − 1
⨂

β
)}

,

(A.3)

where log (·) is the natural logarithm and R is an n×n matrix with (i, j)th element Ri j = r
(
xi , x j

)
for i, j = 1, . . . , n.

Once the hyperparameters are estimated, the GP predictor for y(x0) and its associated mean squared error (MSE) can
be calculated with:

ŷ (x0) = β̂ + r′
T

(x0) R−1(y − 1
⨂

β̂), (A.4)

M SE
[
ŷ (x0)

]
= Σ

⨂ (
r (x0, x0) − r′

T
(x0) R−1r′ (x0) + WT (

1T R−11
)−1W

)
, (A.5)

where W = 1 − 1T R−1r (x0) and r (x0) is an n × 1 vector whose i th element is r (xi , x0).

A.1.2. Using a GP model
Given the mean and covariance matrix of a GP model in Eqs. (A.4) and (A.5), one can draw a random realization

from the GP model using the multi-variate Gaussian distribution. For instance, this can be achieved via the mvnrnd()
function in MATLAB. We note that, if the GP model is learned using a dataset (e.g., for metamodeling purposes), the
hyperparameters are estimated (e.g., via MLE). Otherwise, the user defines the hyperparameters but must make sure
that the defined covariance matrix is positive definite (as we have done in Sections 4.3 and 4.4).

A.2. Details on the sensitivity studies at the mesoscale

In Section 4.4 it was illustrated that only the average values of fiber volume fraction and zenith angle (one
component of the misalignment angle) affected the homogenized response of a woven RVE at the mesoscale. These
two parameters are controlled by the corresponding mean values of the MRGP that models the mesoscale spatial
variations (i.e., βv and βθ ). The other parameters of the MRGP model (i.e., βϕ, σ 2

vv, σ
2
ϕϕ, σ 2

θθ , σ
2
vϕ, σ 2

vθ , σ
2
ϕθ , ωx , ωy,

and ωz) were found to affect the homogenized response insignificantly through sensitivity studies.
In our sensitivity studies, we investigated the uncertainty sources one by one. That is, all the hyperparameters of the

MRGP model were fixed except for those controlling one uncertainty source. For instance, to investigate the effect of
fiber volume fraction and its spatial variations, βv and σ 2

vv were changed while the rest of the MRGP hyperparameters
were fixed. For each combination of βv and σ 2

vv , then, 30 independent samples were generated from the MRGP model
to account for the inherent randomness. Next, the variability of the effective moduli of the woven RVE among these
simulations was quantified. If the variability was significant, the parameter was deemed as important. Otherwise, it
was set as a constant and, subsequently, not considered in the metamodeling stage in Section 4.5 (because it would not
change in the multiscale simulations). Below, we demonstrate one of the cases where the significance of local fiber
volume fraction is investigated.

The average value and spatial variations of v are controlled via βv and σ 2
v , respectively. Hence, we fixed the other

parameters and took 30 random and independent realizations from the mesoscale MRGP model for each combination
of βv and σ 2

v . The considered values for βv and σ 2
v are, respectively, [45, 50, 55, 60, 65] % and [9, 16] %. In this case,

the rest of the hyperparameters (i.e., βθ , βϕ, σ 2
ϕϕ, σ 2

θθ , σ
2
vϕ, σ 2

vθ , σ
2
ϕθ ) were set to zero to have the variability be only

a function of spatial variations on v. Fig. 19 summarizes the results of 30 mesoscale simulations where βv = 65%
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Fig. 19. Variation of moduli (MPa) in a woven RVE due to spatial variations of fiber volume fraction (v): The effective moduli change due to the
variations in the local fiber volume fraction. The changes are, however, insignificant. Herein, βv = 65% and σ 2

vv = 16%. Since the latter parameters
is nonzero, 30 simulations were conducted to quantify the effect of variations. The dashed red lines correspond to the moduli when σ 2

vv = 0.

and σ 2
v = 16%. The dashed red line corresponds to the moduli of a woven RVE with σ 2

v = 0% (i.e., with no spatial
variations). As it can be observed, the spatial variations do not significantly affect the homogenized response of a
woven RVE and hence, one can only consider the average fiber volume fraction. Such analyses were conducted for
various combinations and the results are summarized in Fig. 11 for the three parameters v, θ , and ϕ. In the cases
where θ and ϕ changed, the simulated annealing algorithm was used to ensure that

∑N
i=1 sin

(
θ2

i

)
cos

(
ϕ2

i

)
= 0 and∑N

i=1 sin
(
θ2

i

)
sin

(
ϕ2

i

)
= 0 at each yarn cross-section to avoid changing the yarn angle due to fiber misalignment (N

denotes the number of IPs on the yarn cross-section).

A.3. Conditional distribution

If X = [X1, . . . , Xn]T and Y = [Y1, . . . , Ym]T are jointly Gaussian:[
Y
X

]
∼ Nm+n

([
µY
µX

]
,

[
ΣYY ΣYX
ΣXY ΣXX

])
, (A.6)

where Nm+n denotes the multivariate normal distribution, µY = E [Y], µX = E [X], ΣYY = Cov (Y, Y),
ΣXX = Cov (X, X), ΣYX = ΣT

XY = Cov (Y, X) = E
[
(X − µX) (Y − µY)T ]

, and E [·] denotes the expectation
operator. The conditional distribution of Y given X is:

Y|X ∼ Nm
(
µY + ΣYXΣ

−1
XX (X − µX) ,ΣYY − ΣYXΣ

−1
XXΣ

T
YX

)
. (A.7)

In our example, Y = [v, θ ] and X = α.
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