ENGMAE 200A: Engineering Analysis I

Matrix Eigenvalue Problems

Instructor: Dr. Ramin Bostanabad
DEFINITIONS

• What is the difference between the results of these multiplications:

\[
\begin{bmatrix}
6 & 3 \\
4 & 7
\end{bmatrix}
\begin{bmatrix}
5 \\
1
\end{bmatrix}
\text{ vs. }
\begin{bmatrix}
6 & 3 \\
4 & 7
\end{bmatrix}
\begin{bmatrix}
3 \\
4
\end{bmatrix}
\]

• A matrix eigenvalue problem considers the vector equation:

\[\mathbf{Ax} = \lambda \mathbf{x}\] (1)

• Here \(\mathbf{A}\) is a given square matrix, \(\lambda\) an unknown scalar, and \(\mathbf{x}\) an unknown vector. In a matrix eigenvalue problem, the task is to determine \(\lambda\)’s and \(\mathbf{x}\)’s
• \(\lambda \)'s for which (1) has a solution \(x \neq 0 \) is called: an eigenvalue, characteristic value, or latent root.

• Solutions \(x \neq 0 \) of (1) are called the eigenvectors, characteristic vectors of \(A \) corresponding to that eigenvalue \(\lambda \).

• The set of all the eigenvalues of \(A \) is called the spectrum of \(A \). We shall see that the spectrum consists of at least one eigenvalue and at most of \(n \) numerically different eigenvalues.

• The largest of the absolute values of the eigenvalues of \(A \) is called the spectral radius of \(A \).
We use an example:

\[A = \begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix} \]

\[Ax = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

1. \[(A - \lambda I)x = 0 \]

2. \[-5x_1 + 2x_2 = \lambda x_1 \]
 \[2x_1 - 2x_2 = \lambda x_2 \]

3. \[(-5 - \lambda)x_1 + 2x_2 = 0 \]
 \[2x_1 + (-2 - \lambda)x_2 = 0 \]

4. \[(A - \lambda I)x = 0 \]

5. \[D(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} \]
 \[= (-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 6 = 0 \]
• $D(\lambda)$ is the **characteristic determinant** or, if expanded, the characteristic polynomial.
• $D(\lambda) = 0$ the **characteristic equation** of A.

Example Continued:
• Solutions of $D(\lambda) = 0$ are $\lambda_1 = -1$ and $\lambda_2 = -6$. These are the eigenvalues of A.
• Eigenvectors for $\lambda_1 = -1$:

• Eigenvectors for $\lambda_1 = -6$:
What is the difference between the results of these multiplications:

\[
\begin{bmatrix}
6 & 3 \\
4 & 7
\end{bmatrix}
\begin{bmatrix}
5 \\
1
\end{bmatrix}
\text{ vs. }
\begin{bmatrix}
6 & 3 \\
4 & 7
\end{bmatrix}
\begin{bmatrix}
3 \\
4
\end{bmatrix}
\]

Obtain the eigenvalues and eigenvectors.
GENERAL CASE

• How to find the eigenvalues and eigenvectors of:

\[\mathbf{A} \mathbf{x} = \lambda \mathbf{x} \quad (1) \]

\[
\begin{align*}
a_{11}x_1 + \cdots + a_{1n}x_n &= \lambda x_1 \\
a_{21}x_1 + \cdots + a_{2n}x_n &= \lambda x_2 \\
\vdots & \quad \vdots \\
a_{n1}x_1 + \cdots + a_{nn}x_n &= \lambda x_n.
\end{align*}
\]

\[
(A - \lambda I) \mathbf{x} = 0.
\]

\[
D(\lambda) = \det(A - \lambda I) = \begin{vmatrix}
 a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda
\end{vmatrix} = 0.
\]
EXAMPLE

Find the eigenvalues and eigenvectors:

\[
\mathbf{A} = \begin{bmatrix}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{bmatrix}
\]

- Characteristic equation: \(-\lambda^3 - \lambda^2 + 21\lambda + 45 = 0\)
- Roots: \(\lambda_1 = 5, \lambda_2 = \lambda_3 = -3\).
- Form \(\mathbf{A} - \lambda \mathbf{I}\) and then use Gauss elimination:

\[
\mathbf{A} - \lambda \mathbf{I} = \mathbf{A} - 5\mathbf{I} = \begin{bmatrix}
-7 & 2 & -3 \\
2 & -4 & -6 \\
-1 & -2 & -5
\end{bmatrix} \rightarrow \begin{bmatrix}
0 & 2 & -3 \\
0 & -24/7 & -48/7 \\
0 & 0 & 0
\end{bmatrix}
\]

- Hence, the rank is 2.
EXAMPLE CONTINUED

• Choosing $x_3 = -1$ we have $x_2 = 2$ from $-\frac{24}{7} x_2 - \frac{48}{7} x_3 = 0$ and then $x_1 = 1$ from $-7x_1 + 2x_2 - 3x_3 = 0$: $x_1 = [1 \ 2 \ -1]^T$.

• For $\lambda = -3$ the characteristic matrix:

\[A - \lambda I = A + 3I = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
\[
A - \lambda I = A + 3I = \begin{bmatrix}
1 & 2 & -3 \\
2 & 4 & -6 \\
-1 & -2 & 3
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 2 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

- From \(x_1 + 2x_2 - 3x_3 = 0\) we have \(x_1 = -2x_2 + 3x_3\). Choosing \(x_2 = 1, x_3 = 0\) and \(x_2 = 0, x_3 = 1\), we obtain two linearly independent eigenvectors of \(A\) corresponding to \(\lambda = -3\):
Find the eigenvalues and eigenvectors:

\[
A = \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix}
\]

- What are the eigenvalues and eigenvectors of \(A^T\)?
SOME THEOREMS

• **Theorem 1:** The eigenvalues of a square matrix A are the roots of $D(\lambda) = 0$.
 - An $n \times n$ matrix has at least one eigenvalue and at most n numerically different eigenvalues.

• **Theorem 2:** If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue λ, so are $w + x$ (provided $x \neq -w$) and kx for any $k \neq 0$.
 - Eigenvectors corresponding to one and the same eigenvalue λ of A, together with 0, form a vector space, called the *eigenspace* of A corresponding to that λ.
 - *An eigenvector x is determined only up to a constant factor.* So, we can *normalize* x.
EXAMPLE ON LAND USE REVISITED

The 2004 state of land use in a city of 60 mi^2 of built-up area is:

C: Commercially Used 25%

I: Industrially Used 20%

R: Residentially Used 55%

- The transition probabilities for 5-year intervals are given by A and remain practically the same over the time considered.

$$A = \begin{bmatrix} 0.7 & 0.1 & 0 \\ 0.2 & 0.9 & 0.2 \\ 0.1 & 0 & 0.8 \end{bmatrix}$$

To C

To I

To R
What is the **limit state**?

From C From I From R

\[
A = \begin{bmatrix}
0.7 & 0.1 & 0 \\
0.2 & 0.9 & 0.2 \\
0.1 & 0 & 0.8 \\
\end{bmatrix}
\]

- Definition of limit state
- How to find it systematically
EIGENVALUES OF SPECIAL MATRICES

Symmetric, Skew-Symmetric, and Orthogonal:

A real square matrix $A = [a_{jk}]$ is called symmetric if transposition leaves it unchanged:

(1) $A^T = A$, thus $a_{kj} = a_{jk},$

skew-symmetric if transposition gives the negative of A:

(2) $A^T = -A$, thus $a_{kj} = -a_{jk},$

orthogonal if transposition gives the inverse of A:

(3) $A^T = A^{-1}.$
Theorem: Eigenvalues of Symmetric and Skew-Symmetric Matrices

(a) *The eigenvalues of a symmetric matrix are real.*

(b) *The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.*

Examples:

\[
A = \begin{bmatrix}
-3 & 1 & 5 \\
1 & 0 & -2 \\
5 & -2 & 4
\end{bmatrix} \quad B = \begin{bmatrix}
0 & 9 & -12 \\
-9 & 0 & 20 \\
12 & -20 & 0
\end{bmatrix}
\]
Orthogonal transformations: Transformations like $y = Ax$ where A is an orthogonal matrix.

- With each vector x in \mathbb{R}^n such a transformation assigns a vector y in \mathbb{R}^n. For instance, the plane rotation through an angle θ

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

is an orthogonal transformation.
Theorem: Invariance of Inner Products

An orthogonal transformation preserves the value of the inner product:

\[\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = [a_1 \ldots a_n] \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \]

That is, for any \(\mathbf{a} \) and \(\mathbf{b} \) in \(\mathbb{R}^n \), orthogonal \(n \times n \) matrix \(\mathbf{A} \), and \(\mathbf{u} = \mathbf{Aa} \), \(\mathbf{v} = \mathbf{Ab} \) we have \(\mathbf{u} \cdot \mathbf{v} = \mathbf{a} \cdot \mathbf{b} \).

Hence the transformation also preserves the length or norm of any vector \(\mathbf{a} \) in \(\mathbb{R}^n \)

\[\|\mathbf{a}\| = \sqrt{\mathbf{a}^T \mathbf{a}} \]
• **Orthonormality of Column and Row Vectors:** A real square matrix is orthogonal if and only if its column vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_n\) (and also its row vectors) form an **orthonormal system**:

\[
\mathbf{a}_j^T \mathbf{a}_k = \begin{cases}
0 & \text{if } j \neq k \\
1 & \text{if } j = k
\end{cases}
\]

• **Determinant of an Orthogonal Matrix:** Has the value +1 or −1.

• **Eigenvalues of an orthogonal matrix \(\mathbf{A}\):** Real or complex conjugates in pairs and have absolute value 1.
Orthogonal matrix:

\[
A = \begin{bmatrix}
2 & 1 & 2 \\
-2 & 2 & 1 \\
1 & 2 & -2 \\
\end{bmatrix} \times \frac{1}{3}
\]
Theorem: If an \(n \times n \) matrix \(A \) has \(n \) **distinct** eigenvalues, then \(A \) has a basis of eigenvectors \(x_1, \ldots, x_n \) for \(\mathbb{R}^n \).

Theorem: A symmetric matrix has an orthonormal basis of eigenvectors for \(\mathbb{R}^n \).

Example:

\[
A = \begin{bmatrix}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{bmatrix}
\]

\[
\lambda_1 = 5, \quad \lambda_2 = -3, \quad \lambda_3 = -3
\]

\[
x_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}
\]
Definition: An $n \times n$ matrix \hat{A} is called **similar** to an $n \times n$ matrix A if

$$\hat{A} = P^{-1}AP$$

for some (nonsingular!) $n \times n$ matrix P. This transformation, which gives \hat{A} from A, is called a **similarity transformation**.

Theorem: If \hat{A} is similar to A, then \hat{A} has the same eigenvalues as A. Furthermore, if x is an eigenvector of A, then $y = P^{-1}x$ is an eigenvector of \hat{A} corresponding to the same eigenvalue.
Let’s revisit the matrix in slide 2:

\[A = \begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix} \]

Let’s choose \(P = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \) which gives \(P^{-1} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} \)

Then:
\[
\hat{A} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 6 & -3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}
\]
Theorem: If an $n \times n$ matrix A has a basis of eigenvectors, then

$$D = X^{-1}AX$$

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X is the matrix with these eigenvectors as column vectors.

Also:

$$D^m = X^{-1}A^mX \quad (m = 2, 3, \ldots).$$
Diagonalize:

\[
A = \begin{bmatrix}
7.3 & 0.2 & -3.7 \\
-11.5 & 1.0 & 5.5 \\
17.7 & 1.8 & -9.3
\end{bmatrix}
\]

Solution:
Definition: A quadratic form \(Q \) in the components \(x_1, \ldots, x_n \) of a vector \(\mathbf{x} \) is a sum \(n^2 \) of terms:

\[
Q = \mathbf{x}^\top \mathbf{A} \mathbf{x} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} x_j x_k
\]

\[
= a_{11} x_1^2 + a_{12} x_1 x_2 + \cdots + a_{1n} x_1 x_n
\]

\[
+ a_{21} x_2 x_1 + a_{22} x_2^2 + \cdots + a_{2n} x_2 x_n
\]

\[
+ \cdots + a_{nn} x_n^2
\]

\(\mathbf{A} = [a_{jk}] \) is called the **coefficient matrix** of the form. We may assume that \(\mathbf{A} \) is symmetric (?).
EXAMPLE

Let

$$x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= 3x_1^2 + 4x_1x_2 + 6x_2x_1 + 2x_2^2$$

$$= 3x_1^2 + 10x_1x_2 + 2x_2^2.$$

Here $4 + 6 = 10 = 5 + 5$. So:

$$x^T C x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= 3x_1^2 + 5x_1x_2 + 5x_2x_1 + 2x_2^2$$

$$= 3x_1^2 + 10x_1x_2 + 2x_2^2.$$
MANIPULATING QUADRATIC FORMS

• Say you are given something like this:
 \[3x_1^2 + 10x_1 x_2 + 2x_2^2 \]

• How can you convert it to a canonical form:
 \[\alpha y_1^2 + \beta y_2^2 \]

• Applications are many! We will look into an important one.
• Symmetric coefficient matrix A has an orthonormal basis of eigenvectors (Theorem on slide 21). So, if we take these as column vectors, we obtain a matrix X that is orthogonal, so that $X^{-1} = X^T$:

$$A = XDX^{-1} = XDX^T.$$

• Substitution: $Q = x^T XDX^T x$.

• Set $X^T x = y$. Since $X^{-1} = X^T$, we have $X^{-1} x = y$ and so $x = Xy$.

• We also have $x^T X = (X^T x)^T = y^T$ and $X^T x = y$.

• Now Q becomes

$$Q = y^T Dy = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2$$
Theorem: The substitution $x = Xy$ transforms a quadratic form

$$ Q = x^T A x = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{jk} x_j x_k $$

$$ (a_{kj} = a_{jk}) $$

to the principal axes form or **canonical form**

$$ Q = y^T D y = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \ldots + \lambda_n y_n^2 $$

$\lambda_1, \ldots, \lambda_n$ are the (not necessarily distinct) eigenvalues of the (symmetric!) matrix A, and X is an orthogonal matrix with corresponding eigenvectors x_1, \ldots, x_n, respectively, as column vectors.
EXAMPLE

What type of conic section the following quadratic form represents

\[Q = 17x_1^2 - 30x_1x_2 + 17x_2^2 = 128. \]

Solution. We have \(Q = x^T A x \), where

\[A = \begin{bmatrix} 17 & -15 \\ -15 & 17 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \]

Characteristic equation \((17 - \lambda)^2 - 15^2 = 0\) with roots \(\lambda_1 = 2, \lambda_2 = 32 \). So:

\[Q = 2y_1^2 + 32y_2^2. \quad \rightarrow \quad \frac{y_1^2}{8^2} + \frac{y_2^2}{2^2} = 1. \]

What is the direction of the principal axes in the \(x_1x_2 \)-coordinates?
A square matrix $A = [a_{kj}]$ is called

- **Hermitian** if $\bar{A}^T = A$, that is, $\bar{a}_{kj} = a_{jk}$
- **skew-Hermitian** if $\bar{A}^T = -A$, that is, $\bar{a}_{kj} = -a_{jk}$
- **unitary** if $\bar{A}^T = A^{-1}$

These are generalizations of symmetric, skew-symmetric, and orthogonal matrices in complex spaces.

For example, (Theorem on invariance of Inner Product): The unitary transformation $y = Ax$ with a unitary matrix A, preserves the value of the inner product and norm.
generalizing the theorems

- The eigenvalues of a Hermitian matrix (and thus of a symmetric matrix) are real.
- The eigenvalues of a skew-Hermitian matrix (and thus of a skew-symmetric matrix) are pure imaginary or zero.
- The eigenvalues of a unitary matrix (and thus of an orthogonal matrix) have absolute value 1.